Notas de
MATEMÁTICAS

Diego Alejandro Pérez Galeano
Docente tiempo completo CEIPA

Institución universitaria CEIPA
2014
CONTENIDO

1 CONJUNTOS, NÚMEROS REALES Y PROPORCIONALIDAD 1
 1.1 Conjuntos y clasificación ... 1
 1.2 Relaciones y operaciones entre conjuntos 3
 1.3 Ejercicios y problemas de aplicación de conjuntos 6
 1.4 Conjuntos numéricos .. 14
 1.5 Propiedades de los números Reales .. 18
 1.6 Operaciones con los números Reales .. 20
 1.7 Razones y proporciones ... 26
 1.8 Magnitudes directa e inversamente proporcionales 31
 1.9 Aplicaciones de la proporcionalidad .. 33
 SOLUCIÓN A LOS EJERCICIOS PROPUESTOS: 45

2 ÁLGEBRA BÁSICA .. 50
 2.1 Expresiones algebraicas y clasificación ... 50
 2.2 Teoría de exponentes y radicales ... 51
 2.3 Operaciones entre polinomios ... 54
 2.4 Productos y cocientes notables .. 61
 2.5 Factorización de Polinomios ... 69
 2.6 Fracciones Algebraicas ... 95
 SOLUCIÓN A LOS EJERCICIOS PROPUESTOS: 109

3 ECUACIONES E INECUACIONES .. 114
 3.1 Definición y clasificación .. 114
 3.2 Ecuaciones lineales o de primer grado .. 117
 3.3 Ecuaciones Cuadráticas o de segundo grado 121
 3.4 Ecuaciones con Expresiones Racionales .. 133
 3.5 Ecuaciones con Expresiones Irracionales .. 138
 3.6 Sistemas de Ecuaciones 2x2 ... 142
 3.7 Sistemas de Ecuaciones 3x3 ... 150
 3.8 Ecuaciones Exponenciales y Logarítmicas ... 154
 3.9 Desigualdades e Inecuaciones .. 159
3.10 Planteamiento y solución de problemas sobre ecuaciones e inequaciones 170
SOLUCIÓN A LOS EJERCICIOS PROPUESTOS: .. 178

4 MODELACIÓN DE FUNCIONES ... 183
4.1 Definición y clasificación de funciones ... 183
4.2 Cálculo analítico del dominio y rango de una función 187
4.3 La función lineal .. 191
4.4 La función Cuadrática .. 204
4.5 La función Exponencial .. 216
4.6 La función Logarítmica ... 222
SOLUCIÓN A LOS EJERCICIOS PROPUESTOS: ... 226

5 CÁLCULO PARA LA ADMINISTRACIÓN ... 230
5.1 Límites de funciones .. 230
5.2 Continuidad de funciones ... 251
5.3 Derivada de funciones ... 257
5.4 Antiderivada de funciones ... 276
SOLUCIÓN A LOS EJERCICIOS PROPUESTOS: ... 292
1 CONJUNTOS, NÚMEROS REALES Y PROPORCIONALIDAD

1.1 Conjuntos y clasificación

Noción de Conjunto: Existen objetos matemáticos (como punto o número) que no son matemáticamente definibles; el conjunto es uno de estos objetos, llamados también *primitivos*. Por este motivo, podemos dar más bien una noción de *conjunto*, como *una reunión de objetos, denominados elementos que tienen una característica común y bien definida*. Por lo general, un conjunto se nombra con una letra mayúscula, seguida de un igual y un signo de agrupación (regularmente usamos llaves { }). Por ejemplo:

\[A = \{\text{letras de la palabra telescopio}\}\]
\[B = \{2, 5, 7, 9, 11\}\]
\[C = \{1, 3, 5, 7, 9, ...\}\]

Expresión de conjuntos: Podemos expresar un conjunto de dos maneras: por comprensión o por extensión.

- **Comprensión:** expresamos un conjunto por comprensión cuando declaramos la propiedad común de los elementos que lo constituyen. Por ejemplo: \[P = \{\text{números pares comprendidos entre 5 y 11}\}\]
- **Extensión:** un conjunto es expresado por extensión cuando se indican uno por uno los elementos separados por comas (,). Utilizando el ejemplo anterior, dicho conjunto por extensión quedaría indicado así:
\[P = \{6, 8, 10\}\]

Nota: En este momento, es importante aclarar varios aspectos:
1. En un conjunto no se repiten elementos.
2. Cuando el conjunto está conformado por números, una forma alternativa de expresarlo por comprensión es mediante la generalización a partir de una variable. Por ejemplo:
\[K = \{2, 3, 4, 5, 6\}\] Que está por extensión, se puede expresar por comprensión así:
\[K = \{x | x \in \mathbb{N}, 1 < x < 7\}\] Y se lee: "\(K\) es el conjunto de los \(x\) tales que, \(x\) es un número natural que está comprendido entre 1 y 7".

1 Las definiciones aquí expresadas fueron hechas por el autor de la cartilla. Cualquier otro aporte será referenciado indicando claramente la fuente
Clasificación de conjuntos: según la característica de sus elementos, un conjunto puede clasificarse bajo los siguientes criterios:

a. **Conjunto Vacío:** es aquel que no posee elementos. Suele simbolizarse con la letra griega *phi* (ϕ) o con dos llaves sin elementos entre ellas. Son conjuntos vacíos por ejemplo:

 \[A = \{\text{Lunas de Mercurio}\} \text{ O también } A = \{\} \]

 \[F = \{\text{Números naturales menores que } 1\} \text{ O también } F = \phi \]

b. **Conjunto Unitario:** tiene un solo elemento. Algunos ejemplos son:

 \[G = \{\text{Satélites naturales de la tierra}\} = \{\text{Luna}\} \]

 \[D = \{x \mid x \in \mathbb{N}, 5 < x < 7\} = \{6\} \]

c. **Conjunto Universal o Referencial:** según el contexto, este conjunto tiene todos los elementos de estudio. Suele representarse con la letra *U*. Un conjunto universal no es único, y depende, como se dijo anteriormente, del contexto del problema y los conjuntos involucrados.

d. **Conjunto Complementario:** decimos que un conjunto *B* es complementario de otro conjunto *A*, si *B* está formado por los elementos que pertenecen al conjunto universal que no se encuentran en el conjunto *A*. Más adelante profundizaremos en este conjunto y algunas aplicaciones.

e. **Conjunto Finito:** decimos que un conjunto es finito cuando podemos contar sus elementos, es decir, cuando es posible asociar una cantidad exacta de números naturales a sus elementos para determinar cuántos son. Por ejemplo:

 \[W = \{3, 4, 5, 6, 7, 8\} \text{ Tiene } 6 \text{ elementos} \]

 \[Y = \{\text{días de la semana}\} \text{ Tiene } 7 \text{ elementos} \]

f. **Conjunto Infinito:** contrario al anterior, un conjunto es infinito cuando no es posible atribuir una cantidad exacta de números naturales a sus elementos, es decir, no podemos terminar de contarlos. Cuando un conjunto infinito está expresado por extensión, suelen escribirse puntos suspensivos (...) para indicar que no se puede concluir el conteo. Por ejemplo:

\[L = \{x \mid x \in \mathbb{R}, 5 \leq x \leq 10\} \]

\[\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots\} \text{ Es el conjunto de los números naturales} \]
Nota: varios apuntes importantes sobre la anterior clasificación:
1. Para expresar un conjunto vacío se debe utilizar solo una de las dos formas y no la combinación de ellas; es decir, el conjunto \(\{\phi\} \) no es vacío ya que hay un elemento dentro de las llaves.
2. El hecho de que ciertos conjuntos tengan tantos elementos que no esté al alcance de la mente humana comprender su cantidad, no implica que el conjunto sea infinito. Por ejemplo, a pesar de que no ha sido posible contar las estrellas o el número de granos de arena en la playa, estos conjuntos son finitos.

1.2 Relaciones y operaciones entre conjuntos

Relaciones: se pueden establecer dos categorías de relaciones: las que están definidas entre elementos y conjuntos y las que están definidas entre conjuntos. Veamos:

a. Pertenencia: esta relación se da entre elementos y conjuntos. Decimos que un elemento pertenece a un conjunto si y solo si este cumple su característica de formación. Se representa con el símbolo \(\in \) y se lee "pertenecen a"; en caso contrario, el símbolo es \(\notin \) y se lee "no pertenece a". Teniendo en cuenta los conjuntos ejemplificados en la sección anterior, podemos expresar las siguientes relaciones:
 \[6 \in L \quad 8 \in \mathbb{N} \quad \text{martes} \in Y \quad 12 \notin W \]

b. Inclusión: decimos que un conjunto \(A \) está incluido o es subconjunto de \(B \) si y solo si todos los elementos de \(A \) pertenecen a \(B \). Esto último se simboliza \(A \subset B \) y se lee "\(A \) está incluido o es subconjunto de \(B \)". En caso contrario, expresamos \(A \not\subset B \). Con los conjuntos anteriores, algunos ejemplos son:
 \[W \subset \mathbb{N} \quad \mathbb{N} \not\subset L \]

c. Igualdad: dos conjuntos son iguales si tienen exactamente los mismos elementos. Otra forma de comprender esta igualdad es indicando que dos conjuntos son iguales, si y solo si un conjunto está incluido en el otro. Esta relación se representa como \(A = B \)

d. Disyunción: esta relación se establece entre dos conjuntos que no tienen elementos comunes.
Nota:
1. El conjunto vacío es subconjunto de cualquier conjunto.
2. El conjunto vacío es disyunto de todos los conjuntos.
3. Un conjunto cualquiera es subconjunto de sí mismo.

Diagrama de Venn: es un esquema cerrado que permite representar la conformación, relaciones y operaciones que se establecen entre elementos y conjuntos. El conjunto Universal suele ser representado con un rectángulo, mientras que los conjuntos definidos al interior de este se representan con círculos.

Por ejemplo:
Dados los conjuntos
\[U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\} \quad A = \{0, 2, 3, 5, 7, 9\} \quad B = \{1, 2, 5, 6, 7, 10\} \]
\[C = \{0, 1, 4, 5, 6, 8\} \]

La representación por medio de Diagrama de Venn es:

Vemos en la gráfica que el elemento 5 se ubicó en el centro de los tres círculos ya que pertenece simultáneamente a los conjuntos; por otro lado, el elemento que no pertenece a ningún conjunto se ubicó por fuera de los círculos pero al interior del rectángulo que representa al conjunto universal.

Operaciones: consideremos los conjuntos anteriores:
\[U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\} \quad A = \{0, 2, 3, 5, 7, 9\} \quad B = \{1, 2, 5, 6, 7, 10\} \]
\[C = \{0, 1, 4, 5, 6, 8\} \]
Las operaciones que se realizan entre estos conjuntos se definen como sigue:

a. **Unión:** dados dos conjuntos A y B definimos al conjunto unión como $A \cup B$ tomando todos los elementos de ambos, estén o no repetidos (recordando que en el conjunto unión solo se escriben una vez). Definiendo este conjunto por comprensión tenemos que:

$$A \cup B = \{x/ x \in A \lor x \in B\}$$

Por ejemplo

$$A \cup B = \{0, 1, 2, 3, 5, 6, 7, 9, 10\}$$

b. **Intersección:** para encontrar el conjunto intersección entre dos conjuntos, basta elegir los elementos que son **comunes** a ambos; su símbolo es $B \cap C$. Definiendo este conjunto por comprensión tenemos que:

$$B \cap C = \{x/ x \in B \land x \in C\}$$

Por ejemplo:

$$B \cap C = \{1, 5, 6\}$$

c. **Diferencia:** la diferencia entre dos conjuntos A y B está conformada por los elementos de A que no están en B. Este conjunto se nombra $A - B$. Definiendo este conjunto por comprensión tenemos que:

$$A - B = \{x/ x \in A \land x \notin B\}$$

Por ejemplo:

$$A - B = \{0, 3, 9\}$$

d. **Diferencia simétrica:** la diferencia simétrica entre dos conjuntos está compuesta por los elementos que pertenecen a su unión y no a su intersección. Su símbolo es $A \Delta B$. Definiendo este conjunto por comprensión tenemos que:

$$A \Delta B = \{x/ x \in (A \cup B) \land x \notin (A \cap B)\}$$

Por ejemplo:

$$A \Delta B = \{0, 1, 3, 6, 9, 10\}$$

e. **Complemento:** el complemento de un conjunto B (representado como B' o B^c) está compuesto por los elementos que están en el conjunto universal y que no se encuentren en B. Por ejemplo:

$$B' = \{0, 3, 4, 8, 9, 11\}$$

Diagramas de Venn para las operaciones: una aplicación importante de los diagramas de Venn es el reconocimiento de las operaciones entre conjuntos por medio de regiones sombreadas. Así, podemos representar gráficamente las
operaciones definidas anteriormente mediante los siguientes esquemas (esta representación aplica para cualquier cantidad de conjuntos):

![Diagramas de conjuntos](image)

Gráfico 2. Representación de las operaciones entre conjuntos.
Fuente: propia

1.3 Ejercicios y problemas de aplicación de conjuntos
Los siguientes ejercicios y problemas son propuestos para aplicar los conceptos que se han abordado hasta el momento en lo que se refiere a las operaciones entre conjuntos y sus formas de representación.

a. Representar por medio de diagramas de Venn la operación
 \[(A \cup B) - (B \cup C)\]

Solución: Representemos en primer lugar al conjunto \((A \cup B)\)

![Diagrama de Venn](image)
Grafiquemos ahora al conjunto \((B \cup C)\)

Finalmente, al ser la operación una diferencia, borraremos del primer diagrama la región sombreada que le corresponde a \((B \cup C)\) para obtener

Fuente: propia

b. Dados los conjuntos
\[U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\} \quad A = \{0, 2, 3, 5, 7, 9\} \quad B = \{1, 2, 5, 6, 7, 10\} \quad C = \{0, 1, 4, 5, 6, 8\} \]

- Encontrar el conjunto \((C - A) - (A \cup B)'\)

Solución: En este tipo de ejercicios lo primero es tener claro cuál puede ser un orden para efectuar las operaciones. Encontraremos primero al conjunto \((C - A)\); posteriormente a \((A \cup B)\) y luego su complemento para finalmente realizar la diferencia indicada. Veamos:

\((C - A) = \{1, 4, 6, 8\} \ldots \text{recordemos que es lo que hay en } C \text{ que no está en } A\)

\((A \cup B) = \{0, 1, 2, 3, 5, 6, 7, 9, 10\}\) Su complemento será entonces

\((A \cup B)' = \{4, 8, 11\}\).

Finalmente veamos qué hay en \((C - A)\) que no está en \((A \cup B)'\)

\((C - A) - (A \cup B)' = \{1, 6\}\)
- Encontrar el conjunto \((A - C) \cup (B \cap A)\)

Solución: Con el razonamiento anterior, obtenemos esta secuencia de operaciones:
\[(A - C) = \{2, 3, 7, 9\}\]
\[(B \cap A) = \{2, 5, 7\}\] Finalmente
\[(A - C) \cup (B \cap A) = \{2, 3, 5, 7, 9\}\]

c. Problemas de aplicación:
Algunos problemas que involucran cantidades pertenecientes a una o varias categorías se pueden resolver mediante la organización de dichos valores en diagramas de Venn. Aunque no podamos indicar un método general para resolverlos, la mayoría de los casos es necesario escribir en primer lugar las cantidades que están en las intersecciones de los conjuntos y finalmente, escribir los que pertenecen solo a uno u otro conjunto o a ninguno, teniendo cuidados para restar las cantidades que estaban ya en las intersecciones. Los siguientes problemas ejemplificarán este proceso:

- Una compañía editorial le ha preguntado a 1300 personas acerca de su preferencia por la lectura de tres tipos de revista empresarial A, B y C. 430 han declarado leer la revista A, 560 la B y 560 la C. 190 personas dicen leer las revistas A y B, 140 leen las revistas A y C mientras que 170 leen las revistas B y C. Finalmente, 100 personas leen las tres revistas. Con base en esta información responder:

 a. ¿Cuántas personas leen solamente la revista A? ¿Cuántas solo la revista B?, ¿Cuántas solo la revista C?
 b. ¿Cuántas personas leen **por lo menos** dos revistas?
 c. ¿Cuántas personas leen las revistas A y C pero no la B?
 d. ¿Cuántas personas leen A o B pero no la C?
 e. ¿Cuántas personas **no** leen ninguna revista?

Solución: en primer lugar, ubicamos en el diagrama de Venn la cantidad de personas que leen los tres tipos de revistas, en este caso 100. Este valor lo ubicaremos en la intersección de los tres conjuntos. Dado que 190 leen las revistas A y B, esta es la cantidad que debe estar en la región comprendida entre ambos conjuntos, pero como ya hemos ubicado 100, escribiremos lo que hace falta, es decir 90; de igual manera ubicaremos 40 entre A y C (ya que son 140), y 70 entre B y C (dado que son 170).
En el conjunto A hemos contado ya 100+90+40=230, pero como son 430 personas, escribiremos 200 en la región que le corresponde solo a la revista A; de manera análoga escribiremos 300 en el B y 350 en el C.
Si sumamos todos estos valores obtenemos 1150, pero como se encuestaron a 1300 personas, el valor que va por fuera de los tres círculos es $1300-1150=150$. El gráfico de abajo resume lo que hemos acabado de explicar:

Gráfico 4. Representación de la situación del ejemplo.
Fuente: propia

Con base en el gráfico podemos responder las preguntas indicadas:

a. Personas que leen solo la revista A: 200
 Personas que leen solo la revista B: 300
 Personas que leen solo la revista C: 350

b. Cuando decimos por los menos 2 revistas, nos estamos refiriendo a quienes leen 2 revistas o más. En este caso sumemos las personas que leen dos revistas con las que leen las tres.
 Leen dos revistas: $40+90+70=200$
 Leen tres revistas: 100
 Total: $100+200=300$ personas leen por lo menos dos revistas

c. Las personas que leen las revistas A y C (la y significa en este caso simultáneamente) son 140, pero debemos restarle los 100 que también leen la B (este valor es el que está en la intersección de los tres conjuntos).
 Por lo tanto la cantidad de personas pedidas es: $140-100=40$

d. Las personas que leen las revistas A o B son las que se encuentran en cualquiera de los dos conjuntos (o sea en $A \cup B$). De estos valores, debemos quitar los que también pertenecen al conjunto C; de modo que la cantidad de personas solicitadas es: $200+90+300=590$
e. El número de personas que no leen ninguna revista se encuentra por fuera de los tres círculos, en este caso 150.

- En una encuesta realizada a cierto grupo de estudiantes, se encontró que el 38% practica Atletismo, el 47% practica Baloncesto y el 45% practica Ciclismo. 20% practica Atletismo y Baloncesto, 23% practica Atletismo y Ciclismo y 22% practica Baloncesto y Ciclismo. 20% declaró no practicar ninguno de los 3 deportes. Responder:
 a. ¿Qué porcentaje de estudiantes practica los 3 deportes?
 b. ¿Qué porcentaje practica solo el Atletismo? ¿Qué porcentaje solo el Baloncesto? ¿Qué porcentaje solo el Ciclismo?
 c. ¿Qué porcentaje practica a lo sumo dos deportes?
 d. ¿Qué porcentaje no practica el Atletismo ni el Baloncesto?
 e. ¿Qué porcentaje practica el Atletismo y el Baloncesto pero no el Ciclismo?

Solución: en este problema de aplicación no nos indicaron qué porcentaje practica los 3 deportes, de modo que a esta cantidad la llamaremos x. Siguiendo el procedimiento del problema anterior, expresaremos las regiones del diagrama de Venn como sigue:

Personas que practican los tres deportes: x

Como el 20% practica Atletismo y Baloncesto y ya contamos x, entonces en la región faltante entre Atletismo y Baloncesto ubicaremos $20 - x$. De manera análoga ubicaremos $23 - x$ entre Atletismo y Ciclismo y $22 - x$ entre Baloncesto y Ciclismo.

En la región que le corresponde solo al Atletismo debemos restarle a 38 la suma de los valores que ya hemos ubicado, es decir:

$$38 - (x + 23 - x + 20 - x) = x - 5$$

Con este mismo razonamiento escribiremos:

$$47 - (x + 22 - x + 20 - x) = x + 5$$ En el conjunto Baloncesto

$$45 - (x + 22 - x + 23 - x) = x$$ En el conjunto Ciclismo

Finalmente, ubicaremos 20 por fuera de los tres círculos. El siguiente diagrama de Venn ilustrará lo que llevamos hasta ahora:
Para encontrar el valor de x, recordemos que, si el 20% está por fuera de los tres círculos, entonces el 80% debe estar contenido en ellos; es decir, la suma de todos los valores que están en las regiones del diagrama de Venn anterior, debe ser 80. Veamos:

$$x - 5 + 23 - x + 20 - x + x + x + 5 + 22 - x + x = 80$$

Simplificando tenemos que

$$x + 65 = 80$$
$$x = 80 - 65$$
$$x = 15$$

Con esta nueva información, el diagrama de Venn queda de la siguiente manera:

Podemos, con este último diagrama de Venn responder las preguntas planteadas:

a. Porcentaje que practica los 3 deportes: 15%
b. Porcentaje que practica solo Atletismo: 10%
 Porcentaje que practica solo Baloncesto: 20%
 Porcentaje que practica solo Ciclismo: 15%
c. Cuando decimos a lo sumo dos deportes, estamos hablando de quienes practican 2 deportes o menos; en este caso debemos sumar el porcentaje que practica uno y el que practica dos. Veamos:
Porcentaje que practica un deporte: 15%+10%+20%=45%
Porcentaje que practica dos deportes: 8%+7%+5%=20%
Total: 45%+20% = 65%
d. El porcentaje que no practica ninguno de estos deportes se halla por fuera de la unión de los conjuntos A y B, en este caso sumaremos 15%+20%=35%
e. Vemos en el diagrama de Venn que 20% practica Atletismo y Baloncesto, pero de estos, 15% también practican Ciclismo, por lo tanto el valor pedido es 20%-15%=5%

EJERCICIOS PROPUESTOS:

1. En cada caso resolver el problema dado:

a. En una encuesta hecha a 75 personas acerca de su lectura de El Colombiano, El Tiempo y El Mundo, se encontró lo siguiente: 23 leen El Tiempo; 18 leen El Colombiano; 14 leen el mundo; 10 leen El Tiempo y El Colombiano; 9 leen El Tiempo y El Mundo; 8 leen El Colombiano y El Mundo; y 5 personas leen los tres periódicos. Hallar:
 - ¿Cuántas personas no leen ninguno de los tres periódicos?
 - ¿Cuántos leen solamente El Tiempo?
 - ¿Cuántos no leen ni El Colombiano ni El Tiempo?
 - ¿Cuántos leen El Tiempo o El Colombiano?
 - ¿Cuántos leen a lo sumo dos periódicos?

b. Una encuesta sobre hábitos bibliotecarios en la universidad arrojó los siguientes resultados sobre 120 estudiantes consultados: A 57 les sirve el horario de 8-12 M; a 63 les sirve el horario de 12-4 PM; a 45 les sirve el horario de 4-8 PM; a 11 les sirve el horario de 8-12 M y 12-4 PM; a 21 les sirven los horarios de 8-12 M y 4-8 PM; a 32 les sirve el horario de 12-4 PM y 4-8 PM; a 9 les sirven los tres horarios. Encontrar:
 - ¿A cuántos estudiantes les sirve solamente el horario de 12-4 PM?
 - ¿A cuántas personas no les sirve ni el horario de 8-12 M ni el horario de 4-8 PM?
 - ¿A cuántas personas les sirve al menos un horario?
 - ¿A cuántas personas les sirve el horario de 12-4 PM y el horario de 4-8 PM, pero no el horario de 8-12 M?
c. En un examen de estadística sobre tres preguntas se dieron los siguientes resultados al aplicarlo a 75 alumnos: 30 alumnos acertaron las tres preguntas; 45 alumnos acertaron la 1ª y 2ª preguntas; 35 alumnos acertaron la 2ª y 3ª preguntas; 43 alumnos acertaron la 1ª y 3ª preguntas; 60 alumnos acertaron la 1ª pregunta; 53 alumnos acertaron la 2ª pregunta; 49 alumnos acertaron la 3ª pregunta.

Hallar:
- ¿Cuántos estudiantes aprobaron la 2ª y la 3ª, pero no la 1ª?
- ¿Cuántos no aprobaron ni la 1ª ni la 3ª?
- ¿Cuántos aprobaron por lo menos dos preguntas?
- ¿Cuántos no aprobaron al menos una pregunta?

d. De 100 estudiantes, 30 estudian matemáticas, 15 estudian matemáticas y estadística, y 42 ni matemáticas ni estadística. Encontrar:
- El número que estudian estadística, pero no matemáticas.
- Los alumnos que solo estudian matemáticas.

e. En un curso el 53% de los estudiantes aprueban lógica, el 52% aprueba álgebra y el 20% ninguno de los dos temas. Hallar el porcentaje de alumnos que aprueban ambas materias y el porcentaje de alumnos que aprueban solamente álgebra.

f. La biblioteca de la universidad realizó una investigación acerca de la lectura de tres revistas administrativas especializadas A, B y C. De 75 estudiantes consultados, 24 leen la revista A, 25 leen la revista B y 18 leen la revista C. También se sabe que 10 leen las revistas A y B; 12 leen las revistas A y C; 9 leen las revistas B y C. Cuatro personas leen las tres revistas.

Utilice un diagrama de conjuntos para determinar:
- ¿Cuántas personas leen solamente una revista?
- ¿Cuántas personas no leen la revista C?
- ¿Cuántas personas no leen ninguna de las revistas?
- ¿Cuántas personas leen por lo menos dos de las revistas?

g. Una encuesta realizada a 200 inversionistas arrojó los siguientes datos: 89 tienen inversiones en cuentas bancarias, 74 tienen inversiones en CDT y 96 tienen inversiones en acciones; 47 tienen inversiones en cuentas bancarias y CDT, 36 tienen inversiones en cuentas bancarias y en acciones, 37 tienen inversiones en CDT y acciones; 39 de ellos tienen otro tipo de inversiones.
¿Cuántos de los inversionistas encuestados tienen inversiones en los tres tipos mencionados?
¿Qué porcentaje de esos inversionistas tiene inversiones únicamente en acciones?
¿Qué porcentaje de los encuestados tienen inversiones en por lo menos dos tipos de propuestas?

2. Dados los conjuntos: \(U = \{1, 2, 3, 4, 5, 6, a, b, c, d\} \)
\(A = \{1, a, c, 4\} \quad M = \{b, 2, 5, c\} \quad N = \{2, a, 4, d\} \)

Hallar:
 a. \(A \cap (M - N) \)
 b. \((M - A) \cup N \)
 c. \((M \cap N') - A \)
 d. \((A \cup M)' - N' \)
 e. \((N \cap M) - A \)

3. Dados los conjuntos \(U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\} \)
\(A = \{\text{números naturales mayores de } 5 \text{ y menores que } 12\} \)
\(B = \{0, 2, 4, 6, 8, 9, 12, 15\} \)
\(C = \{1, 5, 7, 10, 11, 12, 14\} \)

Hallar:
 a. \((A' - C) \cup B' \)
 b. \((B \cap A)' \cup C \)
 c. \(B - (A - C') \)

1.4 Conjuntos numéricos
Una de las aplicaciones más importantes de los conjuntos a través de la historia es la organización de los números de acuerdo a sus características tanto de estructura como de operatividad. En este apartado abordaremos los principales conjuntos numéricos, a la vez que explicaremos brevemente cómo surgieron y qué características tienen respecto a su estructura y formas de representación.

a. **Números Naturales**: fue tal vez el primer conjunto numérico que apareció a partir de las actividades del hombre primitivo. El surgimiento del número natural se debe a la necesidad del hombre por **contar** sus bienes con el fin de **administrar** sus posesiones y tener el control sobre las cantidades a fin de
realizar trueques o intercambios. Este conjunto suele ser representado con la letra \(\mathbb{N} \).

\[\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \ldots \} \]

Sus características principales son:
- Tiene un primer elemento llamado \textit{uno} (1). No se considera un número natural menor que este y por el contrario, 1 es el menor elemento de este conjunto.
- Es un conjunto infinito de modo que, por más grande que sea un número natural, siempre encontraremos un número mayor que este.
- En este conjunto se puede considerar números consecutivos, es decir, sabiendo el valor de un número natural, se puede saber cuál es el número que le sigue. Además, si un número es consecutivo de otro, no existe otro número natural en medio de estos.

\section*{b. Números Enteros:}

La imposibilidad de representar con números naturales la ausencia de cantidad o pérdidas en áreas comerciales, llevaron a la humanidad a la construcción de una extensión de los números naturales que consideraran tanto a un número neutro como a números que representaran carencia de algo, sin embargo, este conjunto no tuvo aceptación sino hasta el siglo XVII donde se incluyan en trabajos científicos. Surgió entonces un conjunto al que denominamos números enteros, representado por la letra \(\mathbb{Z} \) (se representa con esta letra ya que es la primera de la palabra \textit{Zahlen}, que significa ‘número’ en alemán) que ayudará a representar cantidades en un sistema de referencia donde se consideraran aquellas por debajo del punto de equilibrio, por ejemplo: temperaturas, alturas bajo el nivel del mar, balances contables, entre otros.

\[\mathbb{Z} = \{\ldots −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, \ldots \} \]

Algunas de las características de este conjunto son:
- No tiene ni principio ni fin.
- Cada número natural (en este caso también llamado positivo) tiene un inverso aditivo (número negativo)
- Existe un número que carece de signo llamado cero (0) el cual es el resultado de sumar un número con su inverso aditivo.
- En este conjunto también se puede establecer una relación de consecución, es decir, sabiendo el valor de un número entero, se puede determinar cuál es el que le sigue, y además, entre dos números enteros consecutivos, no hay ningún otro.

\section*{c. Números Racionales:}

Una de las dificultades que conllevaba la implementación de los números enteros es que no era posible dividirlos de
modo que se pudieran expresar “partes” de cualquier cantidad (de ahí que los números se llamen enteros). Para solucionar esta dificultad, surgieron los números racionales, los cuales posibilitaron medir casi todas las magnitudes y compararlas con un patrón establecido. Este conjunto suele representarse con la letra \mathbb{Q} que se deriva de la palabra Quotient. Como veremos más adelante, no existe una numeración específica para este conjunto como en los casos anteriores, de modo que expresaremos al conjunto \mathbb{Q} por comprensión como sigue:

$$
\mathbb{Q} = \left\{ \frac{a}{b}, a \in \mathbb{Z} \land b \in \mathbb{Z}, b \neq 0 \right\}
$$

La anterior notación significa que todo número racional puede expresarse como una fracción donde tanto el número de arriba (llamado numerador), como el número de abajo (llamado denominador) son enteros, excepto el cero para el caso del denominador. Algunas características de este conjunto son:

- Los números racionales son una extensión de los números enteros, es decir, todo número entero se puede expresar como un número racional, por ejemplo $14 = \frac{14}{1}$
- En este conjunto no es posible hablar de consecutivos, ya que entre dos números racionales siempre habrá por lo menos un número racional.
- Todo número racional se puede representar como un decimal finito o infinito periódico. Por ejemplo:

 $\frac{3}{4} = 0.75$ Es un decimal finito

 $\frac{5}{9} = 0.555555 \ldots$ Es un decimal infinito periódico. También se representa como $0.\overline{5}$

d. **Número Irracionales**: aún con los números racionales, no se podía dar solución a todos los problemas prácticos de las personas, tanto desde lo científico (solución de ecuaciones) como desde lo contextual (medir la diagonal de una tabla cuadrada y compararla con el lado de esta). De estas dificultades, entre otras, surgen los números irracionales, como un complemento de los números racionales. Como no tenemos a nuestra disposición una forma general de expresar este conjunto, definimos a los números irracionales como “aquellos que no se pueden expresar como el cociente de dos números enteros y cuya representación es un número decimal siempre infinito y no periódico”. En general este conjunto se representa como \mathbb{Q}' ya que, con respecto a los números reales que definiremos posteriormente, los irracionales son complementarios con los racionales.
Algunos ejemplos de estos números son:
- Las raíces de algunos números como $\sqrt{2} = 1.4142 \ldots$
 \[\sqrt{5} = 1.709975 \ldots \quad \sqrt{-25} = -1.066494945 \ldots \]
- El número pi: $\pi = 3.141592653 \ldots$
- El número $e = 2.7181828 \ldots$ entre otros.

e. Números Reales: este conjunto reúne todos los elementos de los conjuntos anteriores. Se representa con la letra \mathbb{R}, y podemos representarlo por comprensión así: $\mathbb{R} = \{x / x \in (\mathbb{Q} \cup \mathbb{Q} ')\}$ El número real soluciona el problema de la medida de cualquier magnitud conocida hasta ahora, ya que permite representar, ya sea con un número racional o irracional la comparación entre una magnitud y su unidad de medida. El conjunto de los números reales se puede representar gráficamente mediante una línea recta, en la que se pueden resaltar el cero (0), los números positivos y los números negativos; los demás números están expresados mediante un punto para cada uno. Dicha recta se conoce como *recta real*.

![Gráfico 7. Recta Real.](Propia.png)

f. Números Imaginarios: una de las pocas dificultades que han presentado los números reales consiste en la imposibilidad de extraer la raíz cuadrada (o en general par) de un número negativo. Por ejemplo, en el conjunto de los reales, es imposible solucionar las ecuaciones:

$$x^2 + 1 = 0 \quad x^2 + x + 1 = 0 \quad x^4 + 4 = 0$$

Si intentamos resolver la primera ecuación llegaríamos a que $x = \sqrt{-1}$, el cual no es un número real. De manera que hubo que inventar otro tipo de número llamado *imaginario* el cual se representa con la letra i y que equivale, como vemos, al número $\sqrt{-1}$. Este conjunto de números se representa generalmente con la letra \mathbb{I}.

g. Números Complejos: el conjunto de los números complejos surge como extensión de los números reales, bajo la necesidad de incorporar a los
imaginarios en la clasificación de los conjuntos numéricos. Este conjunto, representado por la letra \(\mathbb{C} \) puede ser expresado por comprensión como sigue:

\[
\mathbb{C} = \{ a + bi, a \in \mathbb{R} \land b \in \mathbb{R}, i = \sqrt{-1} \}
\]

Lo anterior significa que todo real es un número complejo sin cantidad imaginaria, lo cual indica precisamente que los números reales están contenidos en este último conjunto numérico.

Con base en la anterior clasificación, es válido mostrar entonces la siguiente relación de contención entre los conjuntos mencionados. Utilizaremos para ello un diagrama de Venn, asumiendo que el conjunto referencial es el que los contiene a todos, es decir, los números complejos.

![Diagrama de Venn de los conjuntos numéricos](image)

Gráfico 8. Representación de los conjuntos numéricos
Fuente: propia

1.5 Propiedades de los números Reales

Debido a la aplicabilidad de los números reales en diversas áreas de la ciencia, dedicaremos este apartado a la conceptualización de las principales propiedades de las operaciones básicas definidas sobre este conjunto: adición, sustracción, multiplicación y división. Cada una de las propiedades puede ser expresada en lenguaje algebraico (como lo presentamos en la siguiente tabla) o en nuestro lenguaje cotidiano. Por ejemplo, la propiedad \((-1) \cdot a = -a\) se puede enunciar así: “todo número real multiplicado por -1 cambia el signo que tenía”. Queda en manos del lector “traducir” cada una de las siguientes propiedades a su propio lenguaje, con el fin de tener un posterior dominio de las operaciones que abordaremos más adelante.
<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ley de signos:</td>
<td>Esta conocida ley matemática se puede resumir así: el producto de dos números de igual signo siempre es positivo; mientras que el producto de dos números de diferente signo es negativo.</td>
</tr>
<tr>
<td>Relación entre signos de agrupación con signos de operación</td>
<td>Un signo negativo delante de un signo de agrupación le cambia el signo a los números contenidos en este. Un signo más hace conservar los signos.</td>
</tr>
<tr>
<td>Propiedad distributiva</td>
<td>Un número fuera de un signo de agrupación se multiplica con los números contenidos en este, teniendo en cuenta los signos que poseen tanto el número de afuera como los de adentro.</td>
</tr>
<tr>
<td>Suma de números de igual o diferente signo</td>
<td>Para sumar dos números que tengan el mismo signo, se suman y se escribe el signo común, por ejemplo: -5-7=-12. Si tienen signo diferente, se restan y se escribe el signo del número mayor (sin considerar el signo), por ejemplo para saber el resultado de -7+5, restamos y ubicamos el signo del mayor sin signo, es decir el (-) del 7: -7+5=2.</td>
</tr>
<tr>
<td>Cambio de signo para números reales</td>
<td>Todo número real multiplicado por -1 cambia el signo que tenía.</td>
</tr>
<tr>
<td>$a \cdot 0 = 0$</td>
<td>Todo número real multiplicado por 0 da como resultado 0.</td>
</tr>
<tr>
<td>[-\frac{a}{b} = \frac{a}{-b} = -\frac{a}{b}]</td>
<td>Cuando una fracción tiene un signo negativo en el numerador o en el denominador, este se puede ubicar adelante.</td>
</tr>
<tr>
<td>[\frac{a}{1} = a]</td>
<td>Todo número real se puede expresar como él mismo con (1) como denominador.</td>
</tr>
<tr>
<td>[\frac{0}{a} = 0, a \neq 0]</td>
<td>El cociente entre 0 y cualquier otro número real diferente de 0, da como resultado 0.</td>
</tr>
</tbody>
</table>
\[\frac{ac}{bc} = \frac{a}{b} \]

Si en una fracción el numerador y el denominador se pueden dividir por un mismo número, este se puede eliminar luego de expresar ambos términos de la fracción en función de este producto.

<table>
<thead>
<tr>
<th>Nota:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Esta última propiedad se conoce como “Simplificación de fracciones”, la cual permite expresar una fracción como otra con numerador y denominador menor. Por ejemplo (\frac{10}{15} = \frac{2 \times 5}{3 \times 5} = \frac{2}{3}). De esta manera las fracciones (\frac{10}{15}) y (\frac{2}{3}) se llaman \textit{fracciones equivalentes}.</td>
</tr>
<tr>
<td>2. Algunas de las propiedades anteriores aplican para cualquier cantidad de números, por ejemplo: (a(b + c + d + e + f + \cdots) = ab + ac + ad + ae + af + \cdots).</td>
</tr>
</tbody>
</table>

1.6 Operaciones con los números Reales

Operaciones básicas con números fraccionarios:

Consideremos 2 números fraccionarios \(\frac{a}{b} \) y \(\frac{c}{d} \).

Suma y resta: sin perder generalidad, digamos que los denominadores \(b \) y \(d \) son diferentes entre sí (es decir, las fracciones son heterogéneas). Para sumar o restar las fracciones expuestas arriba enunciaremos dos formas:

1° forma: si \(\frac{a}{b} \) y \(\frac{c}{d} \) son dos fracciones, entonces
\[
\frac{a}{b} + \frac{c}{d} = \frac{a \times d + b \times c}{b \times d} \quad \frac{a}{b} - \frac{c}{d} = \frac{a \times d - b \times c}{b \times d}
\]

Notemos que \(a \times d \) y \(b \times c \) son los productos en “cruz” y que \(b \times d \) es el producto de los dos denominadores. Este método es muy práctico cuando se suman o restan solo dos fracciones. Por ejemplo:
\[
\frac{2}{3} + \frac{5}{7} = \frac{2 \times 7 + 3 \times 5}{3 \times 7} = \frac{14 + 15}{21} = \frac{29}{21} \\
\frac{3}{4} - \frac{2}{7} = \frac{3 \times 7 - 4 \times 2}{4 \times 7} = \frac{21 - 8}{28} = \frac{13}{28}
\]

2° forma: se halla el mcm (mínimo común múltiplo) de los denominadores y este será el denominador de la fracción resultante. Se divide este número entre los...
denominadores de los sumandos y se multiplica el resultado por su respectivo numerador; estos productos irán en el numerador. Finalmente se suman o restan estos resultados. Por ejemplo:

\[
\frac{7}{4} + \frac{5}{6} = \frac{3 \times 7 + 2 \times 5}{12} = \frac{21 + 10}{12} = \frac{31}{12}
\]

 Nótese que \(12 ÷ 4 = 3\) y este multiplicado por 7 da como resultado 21. Por otro lado \(12 ÷ 6 = 2\) y multiplicado por 5 da como resultado 10. Este método es práctico cuando son más de dos sumandos o cuando el mcm es menor que el producto de los denominadores.

Multiplicación: para multiplicar dos fracciones, basta multiplicar los numeradores y los denominadores entre sí. Es decir:

\[
\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}
\]

Por ejemplo: \(\frac{3}{10} \times \frac{7}{2} = \frac{3 \times 7}{10 \times 2} = \frac{21}{20}\)

División: para dividir dos fracciones se realiza el producto en “cruz” de numeradores con denominadores. El producto del numerador del dividendo con el denominador del divisor es el numerador del resultado; el otro producto será el denominador. Es decir:

\[
\frac{a}{b} ÷ \frac{c}{d} = \frac{a \times d}{b \times c}
\]

Ejemplo: \(\frac{1}{5} ÷ \frac{4}{3} = \frac{1 \times 3}{5 \times 4} = \frac{3}{20}\)

Potenciación, Radicación y Logaritmación:

Definidas las propiedades de los números reales sobre sus operaciones básicas, conceptualizaremos tres nuevos procedimientos aritméticos que servirán de herramienta para solucionar posteriores problemas.

1. **Potenciación:** dados dos números reales \(a\) y \(n\), decimos que \(a^n\) (\(a\) elevado a la \(n\)) es el resultado de multiplicar el número \(a\) por sí mismo, tantas veces como se lo indique \(n\), es decir:

\[
a \times a \times a \times a \times a = a^n = b
\]

\(n\) veces
Al número a se le llama base, al número n se le llama exponente y al número b, resultado de esta operación se le conoce como potencia.

2. **Radicación**: la raíz n –ésima de un número b, es aquel número real que, multiplicado por sí mismo n veces, da como producto el número b, es decir:

$$\sqrt[n]{b} = a, \text{si } a^n = b$$

El número b se llama radicando, el número n se conoce como índice, el símbolo $\sqrt{}$ se llama radical y finalmente el número a se conoce en esta operación como raíz.

3. **Logaritmación**: conocidos dos números reales a y b, decimos que el logaritmo en base a de b, es el número al que debemos elevar el número a para obtener el número b.

$$\log_a b = n, \text{si } a^n = b$$

Al número a se le llama base, al número b se le llama potencia y finalmente al número n se le llama logaritmo.

Definidas estas operaciones, podemos elegir tres números reales y ejemplificarlas:

<table>
<thead>
<tr>
<th>Potenciación</th>
<th>Radicación</th>
<th>Logaritmación</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^5 = 32$</td>
<td>$\sqrt[5]{32} = 2$</td>
<td>$\log_2 32 = 5$</td>
</tr>
</tbody>
</table>

Si tomamos como punto de partida la potenciación, podemos decir que la radicación y la logaritmación son sus operaciones inversas, ya que la radicación encuentra su base (en este caso 2) y la logaritmación encuentra al exponente (en este caso 5).

Nota:

1. Algunas potencias y raíces tienen nombres especiales dada su utilidad en la solución de diversos problemas:
 La potencia de exponente dos se llama **cuadrado** y la de base tres se conoce como **cúbica**; análogamente, la raíz de índice dos se llama **cuadrada**, mientras que la de índice tres se denomina **cúbica**.
2. Dada su utilidad en diversos campos del saber, el logaritmo de base diez, se conoce como logaritmo común y por lo general se simboliza simplemente como \(\log \). En las algunas calculadoras, por ejemplo, existe la tecla con esta denominación, la cual está programada para hallar logaritmos en base diez.

3. Los logaritmos están definidos para bases y potencias positivas, es decir \(\log_2 8 \) y \(\log_{-3} 27 \) no están determinados.

Propiedades adicionales
Con estas tres nuevas operaciones, podemos enunciar algunas propiedades, las cuales serán formalizadas en el segundo objeto de aprendizaje:

1. **Base o radicando fraccionario**: cuando un número fraccionario se eleva a un exponente real \(n \), se elevan tanto el numerador como el denominador; de manera análoga, al hallar la raíz \(n \) de un número racional, se extrae la raíz del numerador y del denominador. Por ejemplo:

\[
\left(\frac{2}{3} \right)^4 = \frac{2^4}{3^4} = \frac{16}{81} \\
\sqrt[5]{\frac{243}{1024}} = \frac{\sqrt[5]{243}}{\sqrt[5]{1024}} = \frac{3}{4}
\]

2. **Exponente negativo**: cuando un número real se eleva a una potencia negativa, el resultado es una fracción cuyo numerador es 1 y cuyo denominador es la potencia dada pero con exponente positivo; si la base está expresada como un fraccionario, basta intercambiar el numerador con el denominador y escribir el exponente positivo. Ejemplo:

\[
(4)^{-2} = \frac{1}{4^2} = \frac{1}{16} \\
\left(\frac{6}{5} \right)^{-3} = \left(\frac{5}{6} \right)^3 = \frac{125}{216}
\]

3. **Raíz de números negativos**: los números negativos no tienen raíces reales de índice par; si el índice es impar, la raíz obtenida también es negativa. Por ejemplo:

\[
\sqrt[4]{-16} \text{ no existe} \\
\sqrt[2]{-27} = -3
\]

4. **Cambio de base para logaritmos**: en algunos casos es necesario simplificar la notación para los logaritmos en términos de una base estándar (sobre todo para utilizar la calculadora); por eso, podemos expresar un logaritmo cualquiera dividiendo el logaritmo común de la potencia entre el logaritmo común de la base. Por ejemplo:
\[\log_3 81 \text{ puede escribirse en la calculadora así: } \log 81 \div \log 3 = 4 \]

5. **Jerarquía para las operaciones:** cuando una expresión que contiene varias operaciones no presenta signos de agrupación que indiquen un orden, la jerarquía de operatividad que se debe seguir es la siguiente:

a. Potenciación, radicación y/o logaritación.

b. Multiplicación y/o división.

c. Suma y/o resta.

Por ejemplo: \(3^2 \times 5 + \log_7 343\)

\[3^2 \times 5 + \log_7 343 = 9 \times 5 + 3 \quad \text{Primero calculamos la potencia y el logaritmo.}\]
\[3^2 \times 5 + \log_7 343 = 45 + 3 \quad \text{Luego hacemos la multiplicación.}\]
\[3^2 \times 5 + \log_7 343 = 48 \quad \text{Finalmente hacemos la suma.}\]

Ejemplos:

Ejemplificaremos algunas de estas propiedades por medio de los siguientes ejercicios. El primero de estos será explicado paso por paso, los subsecuentes serán solo desarrollados.

- **Simplificar** \(3 + \frac{1}{4} + \sqrt{\frac{1-7}{16}}\)

\[\left(\frac{-2}{9}\right)^{-2} \div -\frac{3^5 + 7}{22 + 2}\]

<table>
<thead>
<tr>
<th>Paso</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3 + \frac{1}{4} + \sqrt{\frac{16 - 7}{16}}]</td>
<td>((\left(\frac{-2}{9}\right)^{-2} \div -\frac{3^5 + 7}{22 + 2}) Primero realizaremos la resta que está planteada en la raíz del numerador)</td>
</tr>
<tr>
<td>[3 + \frac{1}{4} + \sqrt{\frac{9}{16}}]</td>
<td>((\left(\frac{-2}{9}\right)^{-2} \div -\frac{3^5 + 7}{22 + 2}) En este paso extrajimos las raíces y calculamos las potencias. Recordemos que en el denominador había un exponente negativo, por eso invertimos las potencias.</td>
</tr>
<tr>
<td>[3 + \frac{1}{4} + \frac{3}{4}]</td>
<td>[\frac{81}{4} \div -\frac{243 + 7}{22 + 2}]</td>
</tr>
</tbody>
</table>
Realizamos la división de fracciones y ubicamos el signo menos delante de la fracción de acuerdo a la propiedad que vimos anteriormente.

Fracciones

\[3 + \frac{1}{\frac{-11}{6} + \frac{7}{2}} \]

Simplificamos las fracciones tanto del numerador como del denominador.

Suma

\[3 + \frac{1}{\frac{5}{3}} \]

La suma, antes de simplificar, había dado como resultado \(\frac{20}{12} \), pero notamos que ambos eran divisibles por 4.

Finalmente realizamos la suma de fracciones.

\[\frac{18}{5} \]

\[\frac{3}{4} \times \frac{1}{2} + \frac{3}{4} \]

\[\frac{5}{6} \times \frac{3}{2} + \frac{3}{6} \times \frac{1}{6} \]

\[\frac{19}{28} + \frac{19}{8} = \frac{-475}{112} = \frac{-475 + 133}{112} = \frac{-342}{112} = \frac{171}{56} \]
EJERCICIOS PROPUESTOS:

Simplificar cada una de las siguientes expresiones

a. \(\left(\frac{1}{3} \right)^2 \times \left(\frac{1}{2} \right)^4 + \frac{5 \cdot 32}{\sqrt{243}} \times \frac{\log_4 64}{\sqrt{128}} + 3 \)

b. \(\frac{3}{5} - \frac{3 \cdot 81}{625} + \frac{1}{10} \)

c. \(\frac{5}{4} - \frac{3 \cdot \sqrt{27} \times 9}{4} \)

d. \(\frac{\log_8 64 + \frac{3}{5}}{\log_7 49 + \frac{5 \cdot 32}{\sqrt{243}} \times \frac{16}{25}} \)

1.7 Razones y proporciones

Magnitud: cuando hablamos de una magnitud, nos estamos refiriendo a todo aquello que es susceptible a ser medido, es decir, que tiene una característica que se puede comparar numéricamente con una unidad de medida ya establecida. Un ejemplo de magnitud es la temperatura; esta se puede medir en diversas escalas: absoluta, Celsius y Fahrenheit, las cuales tienen una diferente unidad de medida (K, °C y F respectivamente); otro ejemplo es la velocidad, la cual se puede medir en \(\frac{km}{h} \), en \(\frac{m}{seg} \) o \(\frac{cm}{seg} \) según el contexto en el que se quiera comparar unidades de medida.

Razón: la razón entre dos cantidades es el resultado de comparar sus magnitudes, es decir, saber cuánto excede una a la otra o cuantas veces está contenida una en la otra. Para efectos de este texto, hablaremos de la segunda forma de comparación (llamada también razón geométrica).

Decimos entonces que la razón entre dos números reales \(a \) y \(b \) es el cociente \(\frac{a}{b} \) (se lee “\(a \) es a \(b \)”) donde \(a \) es llamado **antecedente** y \(b \) se denomina **consecuente**. Por ejemplo:

Si sabemos que la distancia que recorre un auto es 160 km en 2 horas de viaje, entonces la razón entre la distancia y el tiempo transcurrido es:

\[
\frac{160}{2} = 80 \ km \ en \ una \ hora \ o \ 80 \ \frac{km}{h}
\]

Nota: Aunque una razón tenga la misma estructura de un número fraccionario, se debe ser cuidadoso con la denominación que se le da a los números que la componen; es decir, en el contexto del fraccionario al número de arriba se le llama **numerador** y al número de abajo **denominador**, mientras que para una razón, el número de arriba se llama **antecedente** y el número de abajo se llama consecuente.
Algunas propiedades de las razones son:

- Si el antecedente y el consecuente de una razón se multiplican o dividen por el mismo número, esta no cambia.
- Si el antecedente de una razón se multiplica o se divide por un número, toda la razón quedará multiplicada o dividida por este.
- Si el consecuente se multiplica o se divide por un número, la razón quedará dividida por este número en el primer caso o multiplicada en el segundo.

Ejemplos:

- Dos magnitudes se encuentra en razón de 2 a 3. Si el antecedente es 10, ¿Cuál es el consecuente?

 Solución: como la razón es $\frac{2}{3}$ y el antecedente de la razón pedida es 10, multiplicaremos el antecedente y el consecuente de la razón dada por 5, de modo que esta no cambie. Tendremos entonces:

 \[
 \frac{2 \times 5}{3 \times 5} = \frac{10}{15}
 \]

 Vemos entonces que el consecuente pedido es 15, ya que, en virtud de la primera propiedad, el antecedente es el dado y la razón no cambió.

- La razón entre dos números es de 5 a 6. Si el mayor de los números es 24, ¿Cuál es el menor?

 Solución: de manera análoga, debemos multiplicar a ambos términos por un número común. En la razón dada, vemos que el mayor es el consecuente y además, para que se obtenga el consecuente dado, debemos multiplicar por 4. En efecto:

 \[
 \frac{5 \times 4}{6 \times 4} = \frac{20}{24}
 \]

 Como ya obtuvimos el consecuente pedido y la razón no cambió, obtuvimos el antecedente requerido, en este caso 20.

Proporción: una proporción se define como la *igualdad de dos razones*. Dadas dos razones, decimos que están en proporción si $\frac{a}{b} = \frac{c}{d}$ y se lee “a es a b como...”
c es a d. A las cantidades a y d se les llama extremos, mientras que los números b y c se llaman medios.

Propiedad fundamental de las proporciones: en toda proporción se cumple que el producto de los extremos es igual al producto de los medios. Es decir, si \(\frac{a}{b} = \frac{c}{d} \) entonces \(a \times d = b \times c \). Por ejemplo:

\[
\frac{2}{3} = \frac{12}{18} \quad \text{ya que} \quad 2 \times 18 = 3 \times 12
\]

Si \(a, b, c, d \) son diferentes, cada uno de los cuatro términos se conoce como cuarta proporcional. Si los medios son iguales, decimos que este valor es media proporcional, es decir, tendríamos una proporción de la forma \(\frac{a}{b} = \frac{b}{c} \), donde a y c se denomina tercera proporcional. Por ejemplo:

En \(\frac{2}{4} = \frac{4}{8} \) tenemos que 4 es media proporcional y que 2 y 8 son terceras proporcionales.

Propiedades de las proporciones
La siguiente tabla resume las principales propiedades de las proporciones.

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propiedad fundamental de las proporciones</td>
<td>El producto de los extremos es igual al producto de los medios.</td>
</tr>
<tr>
<td>Si (\frac{a}{b} = \frac{c}{d}) entonces (a \times d = b \times c)</td>
<td></td>
</tr>
<tr>
<td>Intercambio entre antecedente y consecuente</td>
<td>Se pueden invertir los términos de las razones sin alterar la proporción.</td>
</tr>
<tr>
<td>Si (\frac{a}{b} = \frac{c}{d}) entonces (\frac{b}{a} = \frac{d}{c})</td>
<td></td>
</tr>
<tr>
<td>Cambio de extremos y medios</td>
<td>Se pueden cambiar de posición los medios y los extremos sin cambiar la proporción.</td>
</tr>
<tr>
<td>Si (\frac{a}{b} = \frac{c}{d}) entonces (\frac{d}{b} = \frac{c}{a}) y (\frac{a}{c} = \frac{b}{d})</td>
<td></td>
</tr>
<tr>
<td>Suma entre antecedente y consecuente</td>
<td>Se pueden sumar o restar los términos de una razón y la proporción se mantiene con la suma o la resta en la otra razón.</td>
</tr>
<tr>
<td>Si (\frac{a}{b} = \frac{c}{d}) entonces (\frac{a+b}{b} = \frac{c+d}{d})</td>
<td></td>
</tr>
<tr>
<td>Diferencia entre antecedente y consecuente</td>
<td></td>
</tr>
</tbody>
</table>
Si \(\frac{a}{b} = \frac{c}{d} \) entonces \(\frac{a-b}{b} = \frac{c-d}{d} \)

La razón entre la suma de los antecedentes y la suma de los consecuentes es proporcional a cualquiera de las razones simples.

Si \(\frac{a}{b} = \frac{c}{d} \) entonces

\[
\begin{align*}
 a &= \frac{b \times c}{d} \\
 b &= \frac{a \times d}{c} \\
 c &= \frac{a \times d}{b} \\
 d &= \frac{b \times c}{a}
\end{align*}
\]

Cualquier término se puede obtener multiplicando la diagonal conocida y dividiendo por el término que acompaña la diagonal del término buscado.

Ejemplos

Las propiedades definidas anteriormente se pueden aplicar para encontrar un término o una razón desconocida a partir de los datos que dispongamos. Veamos algunos ejemplos:

- **Encontrar la media proporcional entre 3 y 12.**

 Solución: Supongamos que \(x \) es el valor desconocido. De esta manera:

 \[
 \frac{3}{x} = \frac{x}{12}
 \]

 Aplicando las propiedades anteriores tenemos que:

 \[
 3 \times 12 = x \times x \\
 36 = x^2 \\
 x = \pm 6
 \]

 En este ejemplo es válido asumir como resultado a 6 o a -6 ya que ambas son raíces cuadradas de 36. En el contexto de la situación se puede elegir el valor requerido.

- **Encontrar la tercera proporcional entre 8 y 2.**

 Solución: Asumamos que el primer término es la media proporcional y 2 es la tercera proporcional dada. Si \(x \) es el valor desconocido, entonces:

 \[
 \frac{2}{8} = \frac{x}{x}
 \]

 \[
 2 \times x = 8 \times 8 \\
 2 \times x = 64 \\
 x = \frac{64}{2} \\
 x = 32
 \]
Las edades Elena y Alejandro están en razón $\frac{2}{3}$ y suman 25 años. ¿Cuál es la edad de cada uno?

Solución: Supongamos que la edad de Alejandro es a y la de Elena es e. Según las condiciones del problema tenemos las siguientes igualdades:

$$\frac{e}{a} = \frac{2}{3} \quad a + e = 25$$

Como no tenemos las edades por separado, pero sí tenemos la suma, utilizaremos la cuarta propiedad de la tabla anterior. Es decir:

Si $\frac{e}{a} = \frac{2}{3}$ entonces $\frac{a + e}{a} = \frac{2 + 3}{3}$

Pero como $a + e = 25$ sustituimos y obtenemos que:

$$\frac{25}{a} = \frac{5}{3}$$

$$25 \times 3 = 5 \times a$$

$$75 = 5 \times a$$

$$a = 75 \div 5$$

$$a = 15 \text{ años}$$

Y por lo tanto Elena tiene $e = 25 - 15 = 10 \text{ años}$

EJERCICIOS PROPUESTOS:

1. En cada una de las siguientes proporciones, hallar el término faltante:

 a. $\frac{3}{x} = \frac{7}{4}$

 b. $\frac{x}{z} = \frac{12}{5}$

 c. $\frac{x}{y} = \frac{7}{5}$ y además $x - y = 3$

 d. $\frac{20}{x} = \frac{x}{18}$

 e. $\frac{4}{5} = \frac{x}{y}$ y además $x + y = 8$

2. Resolver los siguientes problemas:

 a. Los ingresos anuales de dos empresas distribuidoras de calzado están en razón de 4 a 5. Si el ingreso mayor es de 120000000. ¿Cuál es el ingreso de la otra empresa?
b. Entre Marcela y Alejandro tienen $25000. Si se sabe que la cantidad de dinero que tienen está en razón de 29 a 21. ¿Cuánto tiene cada uno?

c. Encontrar la media proporcional entre 9 y 16.

d. Encontrar la tercera proporcional a 14 y 49.

e. Encontrar la cuarta proporcional de \(\frac{1}{5}, \frac{3}{4}, \) y \(\frac{2}{9}. \)

1.8 Magnitudes directa e inversamente proporcionales

Proporcionalidad directa: La siguiente tabla muestra la relación entre el peso de maíz amarillo importado por una empresa local y la ganancia de venta luego de distribuirla:

<table>
<thead>
<tr>
<th>Peso (Kg)</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganancia ($)</td>
<td>60000</td>
<td>120000</td>
<td>180000</td>
<td>240000</td>
<td>300000</td>
</tr>
</tbody>
</table>

De la tabla anterior, podemos concluir:

1. Mientras más kilogramos de maíz se distribuya, mayor será la ganancia de la empresa.
2. Calculemos la razón entre cada pesaje de maíz y su correspondiente ganancia:

\[
\frac{200}{60000} = \frac{1}{300}, \quad \frac{400}{120000} = \frac{1}{300}, \quad \frac{600}{180000} = \frac{1}{300}, \quad \frac{800}{240000} = \frac{1}{300}, \quad \frac{1000}{300000} = \frac{1}{300}
\]

De esta manera, podemos inferir que las razones entre el peso de maíz y su ganancia están en proporción, ya que los cocientes dieron el mismo resultado.

El caso anterior es un ejemplo de dos magnitudes **directamente proporcionales.** Dos magnitudes tienen proporcionalidad directa si, **mientras una de ellas crece o decrece, la otra también lo hace de manera proporcional.** Además podemos decir que dos magnitudes \(a \) y \(b \) son directamente proporcionales si el cociente entre ambos valores es una constante llamada **constante de proporcionalidad directa.** Simbólicamente podemos expresarlo así:

\(a \propto b \) si \(\frac{a}{b} = k \) Donde \(\propto \) se lee “es proporcional” y \(k \) es la constante. En el ejemplo anterior, la constante es \(\frac{1}{300} \)

Nota: La definición anterior implica que las magnitudes crezcan o decrezcan simultáneamente **de manera proporcional,** es decir, si una de ellas se duplica la otra también lo hace; si una de ellas se reduce a un tercio la otra también. El hecho de que dos magnitudes aumenten o disminuyan no significa que haya proporcionalidad directa, ya que esto solo se cumple si el cambio es **proporcional.**
Proporcionalidad Inversa: La empresa “Todo Pinturas” se encarga de pintar las fachadas de las más prestigiosas construcciones en la ciudad. Una de las promesas de venta es optimizar el tiempo requerido para pintar los muros de acuerdo al número de pintores para cada trabajo. La siguiente tabla relaciona la cantidad de empleados necesarios para pintar una fachada de 100 m² y el tiempo necesario para tal obra.

<table>
<thead>
<tr>
<th>Número de pintores</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo (horas)</td>
<td>18</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

De la tabla anterior podemos inferir:
1. Conforme el número de empleados aumenta, la cantidad de horas requeridas disminuye.
2. Multipliquemos el número de pintores en cada caso por su respectiva cantidad de horas:
 \[\begin{align*}
 2 \times 18 &= 36 \\
 3 \times 12 &= 36 \\
 4 \times 9 &= 36 \\
 6 \times 6 &= 36 \\
 9 \times 4 &= 36 \\
 12 \times 3 &= 36 \\
 15 \times 2.4 &= 36 \\
 \end{align*} \]

El análisis realizado nos permite concluir que ambas magnitudes son **inversamente proporcionales.**

Decimos que dos magnitudes están en proporcionalidad inversa si mientras una aumenta la otra disminuye proporcionalmente y viceversa. De lo inferido anteriormente con ayuda de la tabla podemos decir también que hay proporcionalidad inversa si, al multiplicar las magnitudes, se obtiene un producto constante llamado **constante de proporcionalidad inversa.** Simbólicamente lo podemos expresar así.

\[a \propto \frac{1}{b} \text{ si } a \times b = k \]

Donde \(\propto \frac{1}{b} \) se lee “es inversamente proporcional a \(b \)” y \(k \) es la constante.

Nota: Las magnitudes proporcionales pueden formar proporciones bajo las siguientes condiciones:
1. Si la proporcionalidad es directa, basta escribir las razones en el mismo sentido. En el ejemplo del maíz frente a la ganancia tenemos que:

 \[\begin{align*}
 \text{peso} & \quad \text{ganancia} \\
 200 & \quad 60000 \\
 400 & \quad 120000
 \end{align*} \]

2. Si la proporcionalidad es inversa, se debe invertir una de las razones para poder establecer la igualdad. De esta forma, en el ejemplo del número de pintores respecto a las horas trabajadas tenemos:
EJERCICIOS PROPUESTOS:
En cada uno de las tablas presentadas, completar la información de acuerdo a la relación de proporcionalidad que encuentre entre las magnitudes. Exprese además la constante de proporcionalidad.

1. Complete la tabla de distancias y velocidades:

<table>
<thead>
<tr>
<th>Distancia (Km)</th>
<th>80</th>
<th>140</th>
<th>180</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad (km/h)</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

2. Complete la tabla de diámetro de la llanta y número de vueltas:

<table>
<thead>
<tr>
<th>Diámetro de la llanta (m)</th>
<th>0.5</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de vueltas</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

3. Complete la tabla de peso y precio:

<table>
<thead>
<tr>
<th>Peso (Kg)</th>
<th>100</th>
<th>400</th>
<th>1000</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precio ($)</td>
<td>60000</td>
<td>105000</td>
<td>150000</td>
<td></td>
</tr>
</tbody>
</table>

4. Complete la tabla de velocidad y tiempo:

<table>
<thead>
<tr>
<th>Velocidad (Km/h)</th>
<th>80</th>
<th>100</th>
<th>140</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo (h)</td>
<td>2.5</td>
<td></td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

1.9 Aplicaciones de la proporcionalidad
Si bien la proporcionalidad se aplica a diversas áreas del conocimiento, en este texto abordaremos las dos más importantes: regla de tres y porcentajes.

1.1.1 Regla de tres

La regla de tres es una operación que permite encontrar cualquier término de una proporción conociendo los otros tres. De acuerdo al número de razones implicadas en una proporción, una regla de tres puede ser simple o compuesta. Comenzaremos a abordar a la regla de tres simple, la cual a su vez se puede clasificar en directa e inversa.
Regla de tres simple directa: sabiendo que las dos magnitudes son directamente proporcionales, es posible conocer uno de los cuatro términos suponiendo la igualdad de las razones y realizando la multiplicación cruzada. Ilustraremos esto con los siguientes ejemplos:

- Si 4 libros cuestan $250000, ¿Cuánto cuestan 10?

Solución: para encontrar el valor requerido, ubicaremos las magnitudes y los valores conocidos. Supongamos que el precio buscado es \(x \):

<table>
<thead>
<tr>
<th>Libros</th>
<th>Precio</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>250000</td>
</tr>
<tr>
<td>10</td>
<td>(x)</td>
</tr>
</tbody>
</table>

Como las magnitudes son directamente proporcionales (a más libros más precio) realizamos el producto **cruzado** y despejamos a \(x \):

\[
4 \times x = 10 \times 250000
\]
\[
x = \frac{10 \times 250000}{4} = 625000
\]

Por tanto 10 libros cuestan $625000

- Un automóvil es capaz de recorrer, a velocidad constante, 150 Km en 1.8 horas. ¿Cuánto tiempo se requiere para recorrer 500 Km a la misma velocidad?

Solución: Vemos nuevamente que estas magnitudes son directamente proporcionales, ya que a más distancia recorrida se necesita más tiempo. Realizando un planteamiento análogo al anterior tenemos:

<table>
<thead>
<tr>
<th>Distancia</th>
<th>Tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1.8</td>
</tr>
<tr>
<td>500</td>
<td>(x)</td>
</tr>
</tbody>
</table>

\[
150 \times x = 500 \times 1.8
\]
\[
x = \frac{500 \times 1.8}{150}
\]
\[
x = \frac{900}{150} = 6 \text{ horas}
\]

El automóvil tardará entonces 6 horas.

- 3 albañiles pueden levantar un muro de 40 m\(^2\) en una hora. ¿Cuántos albañiles demás deben ser contratados para que el muro construido en una hora sea 5 veces más grande?

Solución: notemos que a más albañiles el muro tendrá más área. Por tanto la proporcionalidad es directa. Además, si el muro debe quedar 5 veces más grande, el área requerida es de 200 m\(^2\).

\[
\begin{array}{c|c}
\text{Albañiles} & \text{Área} \\
3 & 40 \\
x & 200 \\
\end{array}
\]

\[
40 \times x = 3 \times 200
\]
\[
x = \frac{3 \times 200}{40}
\]
\[
x = \frac{600}{40} = 15 \text{ albañiles}
\]

Por lo tanto, se necesitan 12 obreros más para levantar el muro propuesto.

Regla de tres simple inversa: si las magnitudes son inversamente proporcionales, también es posible hallar cualquiera de los cuatro términos realizando el producto horizontal entre los antecedentes y los consecuentes, o el producto cruzado luego de invertir alguna de las dos razones. En este texto abordaremos el primer método.

- Un grupo de obreros han realizado una obra en 15 días trabajando 8 horas diarias. ¿Cuántos días habrían sido necesarios si solo trabajaran 6 horas al día?

Solución: en este caso vemos que si los obreros trabajan más horas diarias, tardarían menos días; por lo que esta proporcionalidad es inversa. Vamos a plantear las magnitudes en el orden que están y haremos el producto horizontal. Veamos:

\[
\begin{array}{c|c}
\text{Días} & \text{Horas} \\
15 & 8 \\
x & 6 \\
\end{array}
\]
$6 \times x = 15 \times 8$

$x = \frac{15 \times 8}{6}$

$x = \frac{120}{6} = 20 \text{ días}$

Se necesitan entonces 20 días para hacer el trabajo a 6 horas diarias.

- Si leyendo a una velocidad de 120 palabras por minuto una persona puede leer una novela en 7 horas, ¿Cuántas horas tardará en leer la misma novela una persona que lee 84 palabras por minuto?

Solución: en este ejemplo vemos que a más palabras por minuto, menos tiempo se tardará la persona en leer el libro. Planteemos entonces la regla de tres inversa.

<table>
<thead>
<tr>
<th>Palabras/minuto</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>7</td>
</tr>
<tr>
<td>84</td>
<td>x</td>
</tr>
</tbody>
</table>

$84 \times x = 120 \times 7$

$x = \frac{120 \times 7}{84}$

$x = \frac{840}{84} = 10 \text{ horas}$

Tardaría 10 horas en leer la novela.

- Para hacer el viaje entre dos ciudades, un automóvil tarda 1.4 horas si tuviera una velocidad de 70 km/h. Si fuera necesario ir entre las mismas dos ciudades en 0.8 horas, ¿Qué velocidad debe tener el automóvil?

Solución: analizando las magnitudes implicadas, vemos que, a más velocidad del automóvil, menos tiempo tardaría.

<table>
<thead>
<tr>
<th>Velocidad</th>
<th>Tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>1.4</td>
</tr>
<tr>
<td>x</td>
<td>0.8</td>
</tr>
</tbody>
</table>

$0.8 \times x = 70 \times 1.4$

$x = \frac{70 \times 1.4}{0.8}$

$x = \frac{98}{0.8} = 122.5 \text{ Km/h}$
Regla de tres compuesta: si una magnitud varía junto a otras dos, es posible hallar cualquier término de la proporción múltiple planteada. Para encontrar el valor desconocido, una estrategia consiste en ubicar la magnitud que la contiene en medio de las demás y analizar cómo es la proporcionalidad con las otras dos. Donde sea directa el producto es cruzado, donde sea inversa el producto es horizontal. Los ejemplos nos ilustrarán este procedimiento.

- 8 grifos abiertos durante 12 horas han reportado un costo de 30 dólares. ¿Si se dejan abiertos 10 grifos durante 24 horas, cuanto reportará el costo?

Solución: las magnitudes son grifos, tiempo y costo. Como el valor desconocido está en la magnitud costo, ubicaremos esta columna en medio de las dos.

<table>
<thead>
<tr>
<th>Grifos</th>
<th>Costo</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td>24</td>
</tr>
</tbody>
</table>

Analicemos las variaciones: a más grifos abiertos, más costo tendremos; por tanto la proporcionalidad es directa. Además, entre más horas transcurran, también habrá mayor costo; o sea que el cambio también es directamente proporcional. Para comprender mejor el procedimiento, escribiremos una D entre las magnitudes directas y una I entre las magnitudes inversas. Una D implica producto cruzado, mientras que una I implica producto horizontal. En este caso tenemos dos D. Veamos.

<table>
<thead>
<tr>
<th>Grifos</th>
<th>D</th>
<th>Costo</th>
<th>D</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>30</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>x</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

\[8 \times x \times 12 = 10 \times 30 \times 24 \]
\[96 \times x = 7200 \]
\[x = \frac{7200}{96} \]
\[x = 75 \text{ dólares} \]

En los ejemplos subsecuentes haremos directamente el último razonamiento.
- 9 hombres tardaron 5 días a 4 horas diarias para hacer un trabajo. ¿Cuántos días necesitarían 6 hombres trabajando 10 horas diarias?

Solución: el esquema es el siguiente:

<table>
<thead>
<tr>
<th>Hombres</th>
<th>Días</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>10</td>
</tr>
</tbody>
</table>

Como las proporcionalidades son inversas, el producto es horizontal

\[9 \times 5 \times 4 = 6 \times x \times 10\]

\[180 = 60 \times x\]

\[x = \frac{180}{60}\]

\[x = 3 \text{ días}\]

- 8 pintores de la empresa “Todo Pinturas” se han demorado 10 días en pintar una fachada de 500m2. ¿Cuántos días habrán de tardar 6 pintores si la fachada fuese de 600m2?

Solución: El esquema es el siguiente.

<table>
<thead>
<tr>
<th>Pintores</th>
<th>Días</th>
<th>Área</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>600</td>
</tr>
</tbody>
</table>

Notemos que, a más días empleados se necesitarían menos pintores, lo que indica que la relación es inversa; por otro lado, a más días de trabajo, más área sería pintada, por lo que la relación entre estas dos magnitudes es directa. El producto sería entonces horizontal en el lado izquierdo y cruzado en el lado derecho.

\[8 \times 10 \times 600 = 6 \times x \times 500\]

\[48000 = 3000 \times x\]

\[x = \frac{48000}{3000}\]

\[x = 16 \text{ días}\]
EJERCICIOS PROPUESTOS:

Resolver cada uno de los siguientes problemas:

1. 12 personas pueden estar en un hotel durante 5 días pagando en total $180000. ¿Cuánto cuesta el hospedaje de 10 personas durante 8 días?
2. Una persona puede recorrer cierta distancia a una velocidad de 2 km/h durante 90 minutos. ¿Cuántas horas tardará si duplicara su velocidad?
3. Un edificio de 150 m puede producir una sombra de 45 m a cierta hora del día. ¿Cuánto medirá la sombra de una persona de 1.6 m a la misma hora?
4. La empresa “Todo Pintura” puede contratar a 12 pintores para hacer una obra de 200 m2 trabajando 5 horas diarias. ¿Cuántas horas tardarán 10 hombres si la obra es de 350 m2?
5. Un grupo de 15 obreros tardaron 10 días en hacer una obra trabajando 6 horas diarias. Si hubieran trabajado una hora menos ¿Cuántos días hubieran trabajado?
6. Una empresa provee de 200 Kg de maíz a un sector de la ciudad con 7 máquinas que trabajan en igualdad de condiciones. Si la empresa adquiere 3 nuevas máquinas, ¿Cuántos Kg puede distribuir?
7. Un pelotón de 1200 soldados tiene víveres para 4 meses. Si se quiere que los víveres duren 6 meses, ¿Cuántos soldados deben salir de la guarnición?
8. 10 grifos abiertos durante 8 horas han reportado un costo de 25 dólares. ¿Si se dejan abiertos 12 grifos durante 18 horas, cuanto reportará el costo?
9. Un batallón de 3200 hombres tiene víveres para 20 días a razón de 6 raciones diarias para cada hombre. Si se unen 800 soldados ¿Cuántos días durarán los víveres si la ración se reduce a 4 diarias por hombre?
10. 3 hombres trabajando 8 horas diarias se tardaron 12 días en hacer una obra de 100 metros. ¿Cuántos días necesitan 5 hombres trabajando 6 horas diarias para hacer 80 metros de la misma obra?

1.1.2 Porcentajes

Decimos que el tanto por ciento de cierta unidad es la parte que se toma de esta cuando ha sido dividida en 100 partes iguales; así por ejemplo, el 5% de 20 equivale a dividir a 20 en 100 partes y tomar 5 de ellas. Su símbolo es % y se lee “por ciento”. Dada la definición anterior, el x por ciento de una cantidad se puede escribir también como el $\frac{x}{100}$ de esta.

Para calcular porcentajes se debe tener presente a quién se considera como el todo y si la proporcionalidad entre las magnitudes implicadas es directa o inversa. Los siguientes ejemplos exponen algunos de estos casos:
- La empresa “Arrendamos S.A.” tiene entre sus políticas de operación que, todo inmueble que se arriende debe dejarle un 3% de comisión. Si se ha hecho un avalúo neto de arrendamiento para cierto local por $950000 ¿Cuánto le corresponde de comisión a la empresa?

Solución: en este caso, el todo debemos tomarlo como los $950000 y nuestro propósito es encontrar el 3% de este. Para llevar a cabo esto, plantearemos una regla de tres simple preguntándonos: ¿Si $950000 representa el 100%, qué cantidad representa el 3%? Es obvio que a más porcentaje más dinero, por lo cual esta regla de tres es directa. Veamos:

\[
\begin{array}{c|c}
\text{Porcentaje} & \text{Dinero} \\
100 & 950000 \\
3 & x \\
\end{array}
\]

\[
100 \times x = 950000 \times 3 \\
x = \frac{950000 \times 3}{100} = 285000 \\
x = \frac{285000}{100} = $28500
\]

Por tanto, a la empresa le corresponde una comisión de 28500.

- De un grupo de 60 estudiantes, 12 han sido elegidos para participar en un torneo de fútbol, ¿Qué porcentaje representa esta cantidad de estudiantes elegidos?

Solución: analizado el enunciado, notamos que la incógnita en la regla de tres la debemos ubicar en la columna de porcentajes. De esa manera:

\[
\begin{array}{c|c}
\text{Porcentaje} & \text{Estudiantes} \\
100 & 60 \\
x & 12 \\
\end{array}
\]

\[
60 \times x = 100 \times 12 \\
x = \frac{100 \times 12}{60} \\
x = \frac{1200}{60} = 20\%
\]

Lo cual nos indica que los 12 estudiantes representan el 20% del grupo.

40
- De un embarque de autos, se han mandado al taller 14, los cuales representan el 5% del total. ¿Cuántos carros tiene el embarque?

Solución: la pregunta en este caso es por la cantidad de automóviles que representan el todo. La regla de tres planteada es la siguiente:

\[
\begin{array}{c|c|c}
\text{Porcentaje} & \text{Número de Autos} \\
\hline
100 & x \\
5 & 14 \\
\end{array}
\]

\[
5 \times x = 100 \times 14 \\
x = \frac{100 \times 14}{5} \\
x = \frac{1400}{5} = 280 \text{ autos}
\]

El total de autos es 280.

- Un metro de tela cuesta $12000. ¿A cuánto se debe vender para obtener una ganancia del 20%?

Solución: suponiendo que los $12000 representan el 100%, el precio de venta debe ser 20% más que este, es decir, el 120%. Con este razonamiento, organizamos esta regla de tres:

\[
\begin{array}{c|c|c}
\text{Porcentaje} & \text{Precio} \\
\hline
100 & 12000 \\
120 & x \\
\end{array}
\]

\[
100 \times x = 12000 \times 120 \\
x = \frac{12000 \times 120}{100} \\
x = \frac{1440000}{100} = $14400
\]

El metro de tela debe venderse entonces a $14400 para obtener una ganancia del 20%.

- El almacén “Moda Juvenil” tiene este fin de semana un 15% de descuento en todos los jeans de talla M. Si el precio normal es de 78000, ¿Cuánto se debe pagar en la promoción?
Solución: si el almacén descuenta el 15% en la venta de cada jean, esto implica que solo cobra el 100-15=85%. Organizando la regla de tres tenemos:

\[
\begin{array}{c|c}
\text{Porcentaje} & \text{Precio} \\
\hline
100 & 78000 \\
85 & x \\
\end{array}
\]

\[
100 \times x = 78000 \times 85 \\
x = \frac{78000 \times 85}{100} \\
x = \frac{6630000}{100} = \$66300
\]

Según el cálculo anterior, un jean en la promoción cuesta $66300.

- Carlos vendió su consola de juegos obteniendo el 15% de ganancia sobre lo que le había costado. Si la había comprado en $720000, ¿Cuál fue el precio de venta?

Solución: supongamos que los $720000 representan el todo, es decir, el 100%. El objetivo de este problema es saber el valor que representa el 115% del costo. Plantearemos entonces la siguiente regla de tres:

\[
\begin{array}{c|c}
\text{Porcentaje} & \text{Precio} \\
\hline
100 & 720000 \\
115 & x \\
\end{array}
\]

\[
100 \times x = 720000 \times 115 \\
x = \frac{720000 \times 115}{100} \\
x = \frac{82800000}{100} = \$828000
\]

La consola fue vendida por Carlos con un valor de $828000.

Calcular de porcentajes con fracciones y decimales: si bien la regla de tres que hemos utilizado en los anteriores ejemplos es de gran utilidad en la resolución de problemas, también es posible resolver algunas situaciones por medio de la expresión porcentual como fracción o como decimal, recordando que cualquier porcentaje se puede escribir como \(\frac{x}{100} \) y realizando este cociente. Veamos algunos ejemplos:
• Utilice la escritura fraccionaria y decimal para encontrar el 30% de 450.

Solución: si escribimos a 30% como \(\frac{30}{100}\) obtenemos lo siguiente:

\[
\frac{30}{100} \times 450 = \frac{13500}{100} = 135.
\]

Hemos multiplicado porque la expresión “30% de 450” indica el producto entre el porcentaje y la unidad.

Por otro lado, si hacemos la división \(\frac{30}{100} = 0.3\) y realizamos la multiplicación, obtenemos:

\[0.3 \times 450 = 135\]

• La siguiente tabla resume las notas de Elena durante el núcleo de matemáticas. Calcule su nota definitiva.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Debate 1 (2%)</td>
<td>5</td>
</tr>
<tr>
<td>Fruto 1 (3%)</td>
<td>5</td>
</tr>
<tr>
<td>Evaluación 1 (4%)</td>
<td>4.8</td>
</tr>
<tr>
<td>Debate 2 (2%)</td>
<td>5</td>
</tr>
<tr>
<td>Evaluación 2 (4%)</td>
<td>5</td>
</tr>
<tr>
<td>PARCIAL (20%)</td>
<td>4.4</td>
</tr>
<tr>
<td>Debate 3 (2%)</td>
<td>5</td>
</tr>
<tr>
<td>Evaluación 3 (4%)</td>
<td>5</td>
</tr>
<tr>
<td>Fruto 3 (5%)</td>
<td>4.5</td>
</tr>
<tr>
<td>Evaluación 4 (4%)</td>
<td>4</td>
</tr>
<tr>
<td>TRABAJO DE APLICACIÓN (20%)</td>
<td>4.3</td>
</tr>
<tr>
<td>FINAL (30%)</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Solución: complementaremos esta tabla con los respectivos cálculos. Multipliquemos cada nota por su correspondiente porcentaje expresado como decimal. Veamos:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Debate 1 (2%)</td>
<td>5</td>
<td>5 \times 0.02 = 0.1</td>
</tr>
<tr>
<td>Fruto 1 (3%)</td>
<td>5</td>
<td>5 \times 0.03 = 0.15</td>
</tr>
<tr>
<td>Evaluación 1 (4%)</td>
<td>4.8</td>
<td>4.8 \times 0.04 = 0.192</td>
</tr>
<tr>
<td>Debate 2 (2%)</td>
<td>5</td>
<td>5 \times 0.02 = 0.1</td>
</tr>
<tr>
<td>Evaluación 2 (4%)</td>
<td>5</td>
<td>5 \times 0.04 = 0.2</td>
</tr>
<tr>
<td>PARCIAL (20%)</td>
<td>4.4</td>
<td>4.4 \times 0.2 = 0.88</td>
</tr>
<tr>
<td>Debate 3 (2%)</td>
<td>5</td>
<td>5 \times 0.02 = 0.1</td>
</tr>
<tr>
<td>Evaluación 3 (4%)</td>
<td>5</td>
<td>5 \times 0.04 = 0.2</td>
</tr>
<tr>
<td>Fruto 3 (5%)</td>
<td>4.5</td>
<td>4.5 \times 0.05 = 0.225</td>
</tr>
<tr>
<td>Evaluación 4 (4%)</td>
<td>4</td>
<td>4 \times 0.04 = 0.16</td>
</tr>
</tbody>
</table>
Finalmente, la nota definitiva de Elena es 4.547

- ¿Qué nota debe obtener Alejandro en el examen final si la nota acumulada del 70% es de 3.45 y él quiere que el núcleo tenga como nota definitiva 4.5?

Solución: para que el núcleo tenga una nota definitiva de 4.5, Alejandro debe tener un 30% equivalente a 4.5-3.45=1.05. Para saber la nota que debe obtener en el examen final dividamos 1.05 entre el 30%. De esta manera tenemos:

\[
1.05 \div 0.3 = 3.5
\]

Alejandro debe obtener por tanto 3.5 para que el núcleo tenga una nota definitiva de 4.5

EJERCICIOS PROPUESTOS:
Resolver cada uno de los siguientes problemas:
1. De un grupo de 800 excursionistas, el 45% practicaban deportes extremos. ¿Cuántas personas no practicaban estos deportes?
2. Si compramos una motocicleta por valor de $4300000 nos hacen un descuento del 3.5%. ¿Cuál es el valor que debemos pagar con el descuento?
3. El precio de un computador portátil sin el IVA es $1200000. ¿Cuánto debemos pagar con el IVA si este representa el 16% del valor neto?
4. Juanita tenía $62000000 e invirtió el 40% en acciones de su empresa. El 30% de lo restante lo invirtió en remodelar su casa. ¿Cuánto dinero le ha sobrado al final de estas dos inversiones?
5. ¿En cuánto debemos vender una videograbadora que nos costó $450000 si queremos obtener una ganancia del 12%?
6. He vendido un artículo y perdí el 20% con respecto a lo que me había costado. Si el precio al que lo había adquirido fue de $850000 ¿En cuánto lo he vendido?
7. Un hombre ha estipulado en su herencia que su fortuna, que asciende a los $150000000 sea distribuido de la siguiente manera: el 35% a su hijo mayor, el 14% del resto a su hijo menor y lo restante a acciones de su empresa. ¿Cuánto dinero le corresponde a la empresa?
8. Una compañía compra un terreno de 1500 Hectáreas y lo paga de la siguiente manera: el 24% lo paga a $2500000 la hectárea, el 48% lo paga a $1800000 la hectárea y el resto lo paga a $2000000 la hectárea. ¿Cuánto fue el pago total de la compañía?

9. La empresa aseguradora “Viva Tranquilo” cubre el 85% del avalúo de un vehículo y el 10% del resto en caso de accidente; quedándole al propietario los demás gastos. Si un automóvil ha sido evaluado en $45000000, ¿Cuánto debe aportar el propietario en caso de un accidente?

10. Suponga que la aseguradora “Viva Tranquilo” ha asegurado una vivienda por el 65% de su valor neto. Si se han reclamado 45000000 por el incendio de la vivienda, ¿En cuánto estaba valuada?

11. Nicolás tiene un acumulado de 2.51 en el 70% de su núcleo de fundamentos administrativos. Además, él desea que la nota definitiva del núcleo sea de 4.4. ¿Es posible que obtenga esta nota? Explique desde un razonamiento matemático.

SOLUCIÓN A LOS EJERCICIOS PROPUESTOS:

SECCIÓN 1.3 EJERCICIOS Y PROBLEMAS DE APLICACIÓN DE CONJUNTOS

1. En cada caso resolver el problema dado:

 a.
 - 42 personas no leen ninguno de los tres periódicos.
 - 9 leen solamente El Tiempo.
 - 44 no leen ni El Colombiano ni El Tiempo.
 - 31 leen El Tiempo o El Colombiano.
 - 28 leen a lo sumo dos periódicos.

 b.
 - A 29 estudiantes les sirve solamente el horario de 12-4 PM.
 - A 39 personas no les sirve ni el horario de 8-12 M ni el horario de 4-8 PM.
 - A 110 personas les sirve al menos un horario.
 - A 23 personas les sirve el horario de 12-4 PM y el horario de 4-8 PM, pero no el horario de 8-12 M.

 c.
 - 5 estudiantes aprobaron la 2ª y la 3ª, pero no la 1ª.
 - 9 no aprobaron ni la 1ª ni la 3ª.
 - 63 aprobaron por lo menos dos preguntas.
 - 6 no aprobaron al menos una pregunta.
d.
- 28 estudian estadística, pero no matemáticas.
- 15 solo estudian matemáticas.

e. El 25% de alumnos aprueban ambas materias y el 27% de alumnos aprueban solamente álgebra.

f.
- 17 personas leen solamente una revista.
- 57 personas no leen la revista C.
- 35 personas no leen ninguna de las revistas.
- 23 personas leen por lo menos dos de las revistas.

g.
- 22 de los inversionistas encuestados tienen inversiones de los tres tipos mencionados.
- 22.5% de esos inversionistas tiene inversiones únicamente en acciones.
- 38% de esos inversionistas tiene por lo menos dos tipos diferentes de las inversiones reseñadas.

2. Hallar:
 a. $A \cap (M - N) = \{c\}$
 b. $(M - A) \cup N = \{b, 2, 5, a, 4, d\}$
 c. $(M \cap N') - A = \{b, 5\}$
 d. $(A \cup M') - N' = \{d\}$
 e. $(N \cap M) - A = \{2\}$

3. Hallar:
 a. $(A' - C) \cup B' = \{0, 1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15\}$
 b. $(B \cap A') \cup C = \{0, 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15\}$
 c. $B - (A - C') = \{0, 2, 4, 6, 8, 9, 12, 15\}$

SECCIÓN 1.6 OPERACIONES CON LOS NÚMEROS REALES

Simplificar cada una de las siguientes expresiones

a. $\frac{17}{5}$
b. $-\frac{1199}{140}$

c. $-\frac{7}{4}$

d. $\frac{275}{248}$
SECCIÓN 1.7 RAZONES Y PROPORCIONES

1. En cada una de las siguientes proporciones, hallar el término faltante:
 a. \(x = \frac{12}{7} \)
 b. \(x = \frac{6}{5} \)
 c. \(x = \frac{21}{2} \) y \(y = \frac{15}{2} \)
 d. \(x = 6\sqrt{10} \approx 18.97 \)
 e. \(x = \frac{32}{9} \) y \(y = \frac{40}{9} \)

2. Resolver los siguientes problemas:
 a. El ingreso de la otra empresa es $96000000.
 b. Uno de los dos tiene $14500 y el otro tiene $10500.
 c. La media proporcional entre 9 y 16 es 12.
 d. La tercera proporcional a 14 y 49 es 4.
 e. La cuarta proporcional de \(\frac{1}{5}, \frac{3}{4} \) y \(\frac{2}{9} \) es \(\frac{5}{6} \).

SECCIÓN 1.8 MAGNITUDES DIRECTA E INVERSA
MENTE PROPORCIONALES

En cada uno de las tablas presentadas, completar la información de acuerdo a la relación de proporcionalidad que encuentre entre las magnitudes. Exprese además la constante de proporcionalidad.

1.

<table>
<thead>
<tr>
<th>Distancia (Km)</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad (km/h)</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

Constante: 2

2.

<table>
<thead>
<tr>
<th>Diámetro de la llanta (m)</th>
<th>0.5</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de vueltas</td>
<td>8</td>
<td>1.6</td>
<td>2</td>
<td>2.5</td>
<td>3.5</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Constante: 4
SECCIÓN 1.9 APLICACIONES DE LA PROPORCIONALIDAD

Sección 1.9.1 Regla de Tres

Resolver cada uno de los siguientes problemas:
1. Cuesta $240000.
2. Tardaría 0.75 horas, o sea 45 minutos.
3. La sombra medirá 0.48 m.
4. Tardarían 10.5 horas.
5. Hubieran trabajado 12 días.
6. La empresa puede distribuir aproximadamente 285.71 Kg.
7. Deben salir 400 hombres.
8. El costo será de 67.5 dólares.
10. Tardarán 7.68 días, o sea un poco más de 7 días.

Sección 1.9.2 Porcentajes

1. 440 personas no practicaban estos deportes.
2. Debemos pagar $4149500.
3. Debemos pagar $1392000.
4. Le ha sobra $26040000.
5. Debemos venderla en $5040000.
7. A la empresa le corresponde $83850000.
8. La empresa ha pagado $3036000000.
10. La vivienda tenía un valor de $69230769.
11. No es posible, ya que tendría que obtener una nota de 6.3 en el 30% faltante, lo cual, en una escala de 1 a 5 es imposible.
2 ÁLGEBRA BÁSICA

2.1 Expresiones algebraicas y clasificación

Expresión Algebraica: una expresión algebraica es una combinación de variables (expresadas como letras) y números, mediante cualquiera de las operaciones aritméticas básicas.

Término: es cualquiera de las partes que componen una expresión algebraica y que se separa de otra por medio de un signo más (+) o un signo menos (−). En todo término se pueden distinguir cuatro elementos: signo (+ o −), coeficiente (llamado también parte numérica), parte literal (letras) y grado (exponente de la parte literal). Si un término no contiene parte literal, se denomina término independiente o constante. Vemos:

\[-5x^2y^3\]

Signo: -
Coeficiente: -5
Parte literal: x^2y^3
Grado: 2 para x y 3 para y.

Nota: en adelante, para indicar la multiplicación entre un número y una letra o entre dos letras, las escribiremos juntas. Por ejemplo, el producto entre 5 y x lo expresaremos como $5x$, mientras que el producto entre x^2 y m^3 lo escribiremos como x^2m^3.

Clases de términos: de acuerdo a la naturaleza del coeficiente o la parte literal, un término puede ser:

- **Entero:** si el denominador no tiene parte literal, por ejemplo $\frac{-2a^3b}{5}$
- **Fraccionario:** si tiene denominador literal, por ejemplo $\frac{5b}{7xy^3}$
- **Racional:** si no contiene raíces.
- **Irracional:** si la parte literal tiene raíces indicadas, por ejemplo $\frac{-7}{8\sqrt{x^4f^9}}$

Clasificación de las expresiones algebraicas: para efecto de este texto, estudiaremos tres tipos de expresiones algebraicas: expresiones algebraicas polinomiales (o simplemente polinomios), expresiones algebraicas racionales (o fracciones algebraicas) y expresiones algebraicas irracionales.
Polinomio: un polinomio es una expresión algebraica compuesta de uno o más términos de grado entero positivo, los cuales se separan, como se indicó antes, con signos más o menos. De acuerdo a la cantidad de términos, un polinomio recibe un nombre en específico. Veamos:

a. Monomio: tiene un solo término. Por ejemplo \(\frac{4}{5}m^3j^5 \)
b. Binomio: es un polinomio compuesto de dos términos. Por ejemplo: \(8x – 4y^2 \)
c. Trinomio: está compuesto de tres términos. Por ejemplo: \(a^2 + a – 1 \)

Para polinomios de 4 o más términos no hay nombres en específico y simplemente se expresa “polinomio de 4 términos”

Fracciones algebraicas: son expresiones algebraicas fraccionarias que poseen polinomios tanto en el numerador como en el denominador. Por ejemplo \(\frac{x^2+5x+6}{x^3-x^2+3x} \). En la sección 2.6 profundizaremos en el tratamiento algebraico de estas expresiones.

Expresiones irracionales: son aquellas que poseen términos irracionales, es decir, partes literales con raíces indicadas. Por ejemplo

\[
6\sqrt{xy^3} + \frac{5}{3}2\sqrt{2x – 6g}
\]

Términos semejantes: decimos que dos o más términos son semejantes si tienen la misma parte literal (esto incluye los exponentes de las letras). Por ejemplo, son términos semejantes:

- \(6x^2z^3, \ -\frac{5}{9}x^2z^3, \ 4x^2z^3 \)
- \(3\sqrt{xy}, \ -8\sqrt{xy}, \ 12\sqrt{xy} \)

2.2 Teoría de exponentes y radicales

En el objeto de aprendizaje 1 hemos definido las operaciones potenciación, radicación y logaritmación. En este apartado generalizaremos por medio de expresiones algebraicas las principales propiedades de los exponentes y los radicales. Expondremos posteriormente algunos ejemplos y finalmente se sugieren ejercicios de aplicación.

La siguiente tabla resume estas propiedades y su explicación.
<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Explicación</th>
<th>Ejemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^m x^n = x^{m+n})</td>
<td>Para multiplicar potencias de igual base, se escribe la misma base y se suman los exponentes</td>
<td>(x^5 x^8 = x^{5+8} = x^{13})</td>
</tr>
<tr>
<td>(\frac{x^m}{x^n} = x^{m-n}, x \neq 0)</td>
<td>Para dividir potencias de igual base, se escribe la misma base y se restan los exponentes</td>
<td>(\frac{x^8}{x^5} = x^{8-5} = x^3)</td>
</tr>
<tr>
<td>((x^m)^n = x^{mn})</td>
<td>Para elevar una potencia a una potencia, se escribe la base y se multiplican los exponentes</td>
<td>((x^5)^3 = x^{5\times3} = x^{15})</td>
</tr>
<tr>
<td>((xy)^m = x^m y^m)</td>
<td>La potencia de un producto es el producto de las potencias</td>
<td>((2f)^5 = 32f^5)</td>
</tr>
<tr>
<td>((\frac{x}{y})^m = \frac{x^m}{y^m}, y \neq 0)</td>
<td>La potencia de un cociente es el cociente de las potencias</td>
<td>((\frac{4z}{5r})^3 = \frac{64z^3}{125r^3})</td>
</tr>
<tr>
<td>(x^{-n} = \frac{1}{x^n})</td>
<td>Si se eleva un término a una potencia negativa, esta se invierte y se escribe su exponente positivo</td>
<td>(\frac{3x}{4m}^{-2} = \frac{16m^2}{9x^2})</td>
</tr>
<tr>
<td>(x^0 = 1, x \neq 0)</td>
<td>Toda expresión diferente de cero, elevada a la cero, da como resultado 1.</td>
<td>((5p^3)^0 = 1)</td>
</tr>
<tr>
<td></td>
<td>Toda expresión elevada a la 1 da como resultado la misma expresión</td>
<td>((5p^3)^1 = 5p^3)</td>
</tr>
<tr>
<td>(\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y})</td>
<td>La raíz de un producto es el producto de las raíces</td>
<td>(3\sqrt[3]{x^5 y^8} = 3\sqrt[3]{x^5} \sqrt[3]{y^8})</td>
</tr>
<tr>
<td>(\sqrt[n]{x^m} = \sqrt[n]{x} \sqrt[n]{x} \cdots \sqrt[n]{x})</td>
<td>La raíz de un cociente es el cociente de las raíces</td>
<td>(3\sqrt[3]{x^5} = 3\sqrt[3]{x^5})</td>
</tr>
<tr>
<td>(\sqrt[n]{x \pm y} \neq \sqrt[n]{x} \pm \sqrt[n]{y})</td>
<td>La raíz de una suma o resta de dos términos no es igual a la suma o resta de las raíces</td>
<td>(\sqrt{4+9} \neq \sqrt{4} + \sqrt{9})</td>
</tr>
<tr>
<td></td>
<td>(\sqrt[3]{13} \neq 2 + 3)</td>
<td></td>
</tr>
<tr>
<td>(\sqrt[n]{x^m} = m \sqrt[n]{x})</td>
<td>Para hallar la raíz de una raíz se escribe el radicando y se multiplican los índices</td>
<td>(3\sqrt[3]{x} = 15\sqrt[3]{x})</td>
</tr>
<tr>
<td>((\sqrt[n]{x^m})^n = x^m)</td>
<td>Si una raíz se eleva a una potencia de exponente igual al índice, estas se simplifican y el resultado es el radicando</td>
<td>((\sqrt[3]{x^3})^4 = x^3)</td>
</tr>
<tr>
<td>(\sqrt[n]{x^m} = x^{m/n})</td>
<td>Toda raíz se puede expresar como una potencia fraccionaria en la que el radicando es la base, el exponente es el numerador y el índice es el denominador.</td>
<td>(\sqrt[3]{3^5} = 3^{5/4})</td>
</tr>
</tbody>
</table>

Aplicación de exponentes y radicales en la simplificación de expresiones algebraicas: Tal como lo hicimos con las propiedades de las operaciones entre números reales, expondremos dos ejemplos detallando cada paso seguido.
Simplificar y expresar con exponentes positivos \(\left(\frac{a^2 b^{-3} c^7}{b^5 c^4 a^{-6}} \right)^{-2} \)

Solución: existen múltiples formas de simplificar esta fracción. Operaremos primero con los exponentes internos y finalmente multiplicaremos con el exponente externo. Veamos:

<table>
<thead>
<tr>
<th>Paso</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a^2-(-6))b^{-3-5}c^{7-4})^{-2}</td>
<td>Aplicamos la segunda propiedad restando los exponentes</td>
</tr>
<tr>
<td>((a^{2+6}b^{-3-5}c^{7-4})^{-2})</td>
<td>Recordamos la ley de signos para eliminar el paréntesis del exponente de a.</td>
</tr>
<tr>
<td>((a^8b^{-8}c^3)^{-2})</td>
<td>Sumamos números reales de iguales o diferentes signos</td>
</tr>
<tr>
<td>(a^{8x-2}b^{-8x-2}c^{3x-2})</td>
<td>Multiplicamos las potencias internas por el exponente externo</td>
</tr>
<tr>
<td>(a^{-16}b^{16}c^{-6})</td>
<td>Multiplicamos recordando la ley de signos</td>
</tr>
<tr>
<td>(b^{16})</td>
<td>Las potencias de exponente positivo se quedan en el numerador, los de exponente negativo se escriben en el denominador con su exponente ya positivo</td>
</tr>
<tr>
<td>(a^{16}c^6)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paso</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt[5]{\left(\sqrt[3]{x^5} \sqrt{y^{-2}} \sqrt[4]{z^2} \right)^{-3}})</td>
<td>Expresamos todas las raíces, incluyendo la exterior, como potencias de exponente fraccionario.</td>
</tr>
<tr>
<td>(\left(\frac{x^{\frac{5}{3}} y^{-\frac{2}{7}} z^4}{y^\frac{3}{4} x^{\frac{7}{2}} z^{-\frac{9}{5}}} \right)^{-\frac{3}{5}})</td>
<td>Subimos las potencias a restar en el numerador</td>
</tr>
</tbody>
</table>
(\(x^{\frac{5}{2}} y^{-\frac{3}{4}} z^{\frac{9}{5}}\))^{\frac{3}{5}}Eliminamos el paréntesis del exponente de z

\(x^{-\frac{11}{6}} y^{-\frac{29}{28}} z^{\frac{51}{20}}\)^{\frac{3}{5}}Realizamos las sumas recordando las propiedades conceptualizadas en el objeto de aprendizaje anterior

\(x^{-\frac{11}{6}} y^{-\frac{3}{5}} z^{-\frac{29}{28}}\)\(\frac{3}{5}\)\(z^{\frac{51}{20}}\)\(\frac{3}{5}\)Multiplicamos las potencias internas por el exponente externo

\(\frac{11}{10} y^{\frac{87}{140}} z^{\frac{153}{100}}\)Multiplicamos las fracciones recordando la ley de signos

\(\frac{11}{10} y^{\frac{87}{140}} z^{\frac{153}{100}}\)

Las potencias de exponente positivo se quedan en el numerador, los de exponente negativo se escriben en el denominador con su exponente ya positivo

EJERCICIOS PROPUESTOS:

En cada caso realiza las operaciones indicadas y simplifica. Escribe la respuesta con exponentes positivos.

1. \(\frac{m^{-3} n^5 p^4}{p^{-7} n^3 m^2}\)
2. \(\left(\frac{m^5 n^{-3} p^7}{p^4 n^5 m}\right)^{-2}\)
3. \(\left(\sqrt[4]{x^4 y^6} \sqrt[5]{p^{-5}}\right)^{-4}\)
4. \(\frac{\sqrt[5]{a^{-5} b^4 c^2}}{c^{-9} a^3 b^5}\)

5. \(\frac{f^{10} d^{-7}}{f^2 d^3 c^4}\)
6. \(\frac{h^2 f^3 m}{m^{-9} h^3 j^{-8}}\)
7. \(\frac{\sqrt[5]{a^{-5} b^4 c^2}}{c^{-9} a^3 b^5}\)

8. \(\frac{p^{-3} x^2 y^{-6}}{x^4 y^6 z^2}\)

9. \(\frac{m^5 n^{-5} p^2}{n^6 m c^4}\)
10. \(\frac{a^{-5} b^4 c^2}{d a^2 c^{-5}}\)

2.3 Operaciones entre polinomios

Antes de abordar las cuatro operaciones básicas entre polinomios, consideraremos la eliminación de los signos de agrupación en expresiones algebraicas.

54
Eliminación de signos de agrupación: para eliminar los signos de agrupación en una expresión algebraica, basta seguir los siguientes pasos:

1. Los signos de agrupación se eliminan desde los más internos hasta los más externos.
2. Un signo negativo fuera de un signo de agrupación cambia los signos de los términos que estén al interior de este; un signo positivo los conserva.
3. Un término fuera de un signo de agrupación se multiplica con los términos que se encuentran por al interior de este, considerando los signos tanto del término exterior como de los interiores. Esta propiedad es análoga a la que analizamos en el primer objeto de aprendizaje $a(b \pm c) = ab \pm ac$ conocida comúnmente como *propiedad distributiva de la multiplicación respecto a la suma*.
4. En cualquier momento del procedimiento se pueden sumar términos semejantes, siempre y cuando se encuentren dentro del mismo signo de agrupación. Veamos algunos ejemplos:

- **Simplificar**

 $$5a + 3 - \{-3a + 7b - [-6b + 4 - 3a + (8a - 9b + 7) - (5 + 3a - b) + 10]\}$$

Solución: eliminemos primero los paréntesis recordando que afuera de ellos hay un signo más y un signo menos respectivamente:

$$5a + 3 - \{-3a + 7b - [-6b + 4 - 3a + 8a - 9b + 7 - 5 - 3a + b + 10]\}$$

Por fuera de los corchetes hay un menos, por lo tanto los signos cambian

$$5a + 3 - \{-3a + 7b + 6b - 4 + 3a - 8a + 9b - 7 + 5 + 3a - b - 10\}$$

Por fuera de las llaves hay un signo menos, por tanto:

$$5a + 3 + 3a - 7b - 6b + 4 - 3a + 8a - 9b + 7 - 5 - 3a + b + 10$$

Sumando los términos semejantes obtenemos finalmente

$$10a - 21b + 19$$

- **Simplificar**

 $$5x + 3\{2x^2 - 3[y + x(3x - 2y) - y(-8y + 4x) + 7y^2] + 2xy - 5\} - 3y$$

55
Solución: para eliminar los paréntesis, debemos distribuir los términos que se encuentren fuera de ellos recordando la ley de signos y la teoría de exponentes que conceptualizamos anteriormente.

\[5x + 3\{2x^2 - 3[y + 3x^2 - 2xy + 8y^2 - 4xy + 7y^2] + 2xy - 5\} - 3y \]

Eliminemos los corchetes

\[5x + 3\{2x^2 - 3y - 9x^2 + 6xy - 24y^2 + 12xy - 21y^2 + 2xy - 5\} - 3y \]

Eliminemos ahora las llaves

\[5x + 6x^2 - 9y - 27x^2 + 18xy - 72y^2 + 36xy - 63y^2 + 6xy - 15 - 3y \]

Sumemos términos semejantes y organicemos el polinomio resultante respecto a \(x \) de manera descendente en el exponente.

\[-21x^2 + 5x + 60xy - 135y^2 - 12y - 15\]

Suma y resta de polinomios: la diferencia entre estas dos operaciones radica en el signo que se ubique en medio de ellos (+ para la suma y – para la resta naturalmente). Sin embargo, para simplificar los procedimientos, enunciamos las siguientes recomendaciones:

- Para sumar dos polinomios, se ubican uno junto al otro con un signo + en medio de ellos (se recomienda encerrarlos primero entre paréntesis). Al haber un signo positivo fuera de un signo de agrupación, este último se puede eliminar sin cambiar los signos de adentro. Finalmente se suman términos semejantes.
- Para restar dos polinomios, basta cambiar el signo del polinomio sustraendo (el polinomio de atrás) y sumar con las indicaciones anteriores. Veamos:

Ejemplo: Sumar el polinomio \(25x^2 - 14xy + 7x - 4y - 12y^2 \) con el polinomio \(8y - 4x + 18x^2 + 15y^2 + 5xy \)

Solución: enunciaremos dos formas de realizar esta suma, quedándole al lector el criterio para elegir el procedimiento más adecuado.
1\° forma: ubicamos los polinomios en paréntesis y realicemos el procedimiento dictado anteriormente.

\[(25x^2 - 14xy + 7x - 4y - 12y^2) + (8y - 4x + 18x^2 + 15y^2 + 5xy)\]

Eliminemos los signos de agrupación recordando que hay un signo positivo fuera de los paréntesis.

\[25x^2 - 14xy + 7x - 4y - 12y^2 + 8y - 4x + 18x^2 + 15y^2 + 5xy\]

Sumando términos semejantes obtenemos

\[43x^2 + 3x + 4y - 9xy + 3y^2\]

2\° forma: otro procedimiento válido es ubicar un polinomio encima del otro escribiendo los términos semejantes en su respectiva columna para hacer la suma vertical.

\[
\begin{array}{c c c c c c c c c}
25x^2 & +7x & -4y & -14xy & -12y^2 & + \\
18x^2 & -4x & +8y & +5xy & +15y^2 & + \\
43x^2 & +3x & +4y & -9xy & +3y^2 & \\
\end{array}
\]

Ejemplo: restar del polinomio \(25x^2 - 14xy + 7x - 4y - 12y^2\) el polinomio \(8y - 4x + 18x^2 + 15y^2 + 5xy\)

Solución: en este caso utilizaremos la primera forma cambiándole el signo al polinomio sustraendo y sumando términos semejantes.

\[(25x^2 - 14xy + 7x - 4y - 12y^2) - (8y - 4x + 18x^2 + 15y^2 + 5xy)\]

\[25x^2 - 14xy + 7x - 4y - 12y^2 - 8y + 4x - 18x^2 - 15y^2 - 5xy\]

\[7x^2 + 11x - 12y - 19xy - 27y^2\]

Multiplicación de polinomios: expresaremos varios casos, recordando siempre la ley de los signos y la propiedad distributiva de la multiplicación respecto a la suma.

a. Monomio por monomio: se multiplican los coeficientes y las partes literales entre sí. Por ejemplo:

\[(3x^2y^5) \times (-6x^3y^6) = -18x^5y^{11}\]
b. **Monomio por polinomio**: el monomio se distribuye entre todos los términos del polinomio escrito entre paréntesis. Por ejemplo:

\[
(-4m^2n^7) \times (m^3 - 5mn + 6n^2) = \\
(-4m^2n^7) \times (m^3) + (-4m^2n^7) \times (-5mn) + (-4m^2n^7) \times (6n^2) = \\
-4m^5n^7 + 20m^3n^8 - 24m^2n^9
\]

Nota: como lo aclaramos anteriormente para números y partes literales, en adelante escribiremos dos paréntesis seguidos indicando una multiplicación entre ellos. Así, por ejemplo \((m+n) \times (m-n) = (m+n)(m-n)\)

c. **Polinomio por polinomio**: cada término de un polinomio se multiplica por todos los términos del otro. Al final se suman los términos semejantes. Ejemplo:

\[
(x^2 + 5x + 6)(x^2 - 4) = \\
(x^2 + (5x)(x^2) + (5x)(-4) + (6)(x^2) + (6)(-4)) = \\
x^4 - 4x^2 + 5x^3 - 20x + 6x^2 - 24 = \\
x^4 + 5x^3 + 2x^2 - 20x - 24
\]

División de polinomios: para esta operación consideraremos nuevamente tres casos.

a. **Monomio entre monomio**: se dividen los coeficientes y las partes literales entre sí, recordando las leyes de exponentes. Ejemplo:

\[
36n^5x^4 ÷ -12n^2x^2 = -3n^3x^2
\]

b. **Polinomio entre monomio**: en este caso, cada término del polinomio se divide entre el monomio. Una estrategia para tener un orden en la operación es distribuir el monomio como denominador de cada término del polinomio dividiendo. Por ejemplo:

\[
(27a^3b^4 - 54a^5b^3 + 18a^6b^7) ÷ (9a^2b^2) = \\
\frac{27a^3b^4}{9a^2b^2} - \frac{54a^5b^3}{9a^2b^2} + \frac{18a^6b^7}{9a^2b^2} = \\
3ab^2 - 6a^3b + 2a^4b^5
\]
c. **Polinomio entre polinomio:** para dividir un polinomio entre otro, recomendamos seguir los siguientes pasos:

- Ordenar los polinomios en forma descendente respecto a la misma variable. Si falta un exponente en el dividendo, se ubica un cero o un espacio en blanco.
- Se divide el primer término del dividendo entre el primer término del divisor y este será el primer término del cociente.
- Se multiplica este cociente por cada término del divisor, pasando los resultados **con signo contrario** bajo su correspondiente término semejante en el dividendo. Posteriormente se hace la suma vertical.
- Se baja el o los términos siguientes del dividendo y se realizan los pasos anteriores.
- Si el último residuo es cero, la división es **exacta**, en caso contrario será **inexacta**.

El siguiente ejemplo ilustrará estas recomendaciones.

- **Dividir** \(x^4 + 5x^3 + 2x^2 - 20x - 24 \) **entre** \(x + 2 \)

Solución: dividimos \(x^4 \) entre \(x \) para obtener \(x^3 \); este término es el primero del cociente y se multiplica por \(x + 2 \). Los resultados obtenidos se ubican bajo sus términos semejantes del dividendo, realizamos la suma y obtenemos \(3x^3 \). Bajamos el siguiente término del dividendo, es decir \(+2x^2 \) y realizamos el mismo procedimiento. Como podemos notar, al hacer la última suma el resultado es cero, lo cual indica que la división es exacta.

\[
\begin{array}{cccc|ccc}
 x^4 & +5x^3 & +2x^2 & -20x & -24 & x + 2 \\
-x^4 & -2x^3 & & & & x^3 + 3x^2 - 4x - 12 \\
3x^3 & +2x^2 & & & & \\
-3x^3 & -6x^2 & & & & \\
-4x^2 & -20x & & & & \\
4x^2 & +8x & & & & \\
-12x & -24 & & & & \\
+12x & +24 & & & & \\
\end{array}
\]
• Dividir $8x^4 - 4x^3 - 12 + 28x$ entre $4x + 6$

Solución: al organizar ambos polinomios, vemos que en el dividendo falta el término que tiene a x^2 como parte literal; al escribir el polinomio ordenado dejamos entonces un espacio donde debía estar ese término. El resto de la división se efectúa conforme lo realizamos en el primer ejemplo. Veamos:

$$
\begin{array}{c|cc}
8x^4 & -4x^3 & +28x \\
-8x^4 & -12x^3 & -12 \\
\hline
0x^3 & +24x^2 & +28x \\
0x^3 & -36x & -12 \\
\hline
& 8x & +12
\end{array}
$$

EJERCICIOS PROPUESTOS:

1. Simplifique las siguientes expresiones algebraicas de modo que no queden signos de agrupación:

 a. $3x + 1 - [4x + 3y - 2(4y - 6 + (2x - 3y) - (5y + 10x - 2)] + 6x$

 b. $2m + 3[-5mn - 7m^2 - 3[10n^2 + 6m(-4n + 3m) - n(7n - 2m)] + 6] - 2m$

 c. $\frac{1}{2}x + \frac{3}{4}y\left\{5x - \frac{3}{2}y + 6\left[-\frac{2}{9}x + 3y\left(\frac{1}{4}x - 2\right) + \frac{1}{2}x\left(y + \frac{3}{2}\right) + 7xy\right] - 6x\right\}$

 d. $4c - (c^2 - 4[2cd + d^2(c - 4) + c^2(d + 4) + 6] + 2d[3c + (4d - 1) - 6] + d$

 e. $x^2 + 3[-4y + 3z - 2[x + 3(-2y^2 - z) - y(5z - y + 1)] - 6z^2]$

2. Realizar las siguientes sumas y restas de polinomios:

 a. $(5x^3y^6 - 7x^4y^5) + (10x^2y^3 + 5x^4y^5 - 12x^3y^6) - (10x^3y^3 + 5x^4y^5)$

 b. $(\frac{7}{2}x^2 - 7xy + \frac{5}{2}y^2) - (y^2 - 2x^2 + \frac{2}{3}xy) + (5xy - \frac{3}{10}y^2 + 6x^2)$

 c. $(5a^4 + 2a^2b^2 - 6ab^3) + (12a^3b - 15a^4 - 7a^2b^2) - (b^4 - 7ab^3 + 10a^4)$

 d. $(5m^4 - 3mn - 7m^2) - (6m^2 + 7m^4 + 5) - (6m^2 + 12mn + 5mn^2 - 9)$

 e. $(\frac{3}{4}p^3 - \frac{7}{2}pr^4 - \frac{1}{8}r^2) - (\frac{5}{16}p^2r^2 - \frac{3}{4}pr^4 + \frac{2}{3}) + (\frac{6}{5} - \frac{3}{10}r^2 + 6p^3)$

3. Efectuar las siguientes multiplicaciones:

 a. $(4x^3y^6 - 6x^4y^5)(4x^2y^3 + 5x^4y^5 - 3x^3y^6)$
b. \(\left(\frac{3}{5}x^2 - \frac{7}{4}xy + \frac{5}{6}y^2 \right) \left(\frac{5}{8}xy + \frac{5}{9}y^2 - 8x^2 \right) \)

c. \((5x^2 + 2x^2y^2 - 6)(12y^2 - 4x^2y^2 - 7)\)

d. \([((x^2 + 5x + 6)(6x^2 - 12x + 3))(3x + 6 - 8x^2)\]

e. \([(4p^2 - 13p - 5)(-5p^2 + 5p + 3)][(p^3 + 1)(6p^2 - 5p + 9)]\]

4. Realizar las siguientes divisiones:

a. \((x^3 + 1) ÷ (x + 1)\)

b. \((10x^3 + 27x^2 - 33x + 4) ÷ (5x - 4)\)

c. \((15a^3 - 4a^2b - 74ab^2 + 65b^3) ÷ (3a - 5b)\)

d. \((x^3 + 8x^2 + 4) ÷ (x - 3)\)

e. \((2m^3 + 11m^2 - 39m + 10) ÷ (m^2 + 8m - 1)\)

2.4 Productos y cocientes notables

Productos notables: Un producto notable es aquel que se puede realizar por simple inspección, es decir, identificando la naturaleza de los factores o el exponente al que se está elevando un polinomio. En este texto abordaremos los principales productos notables, resaltando además su expresión en lenguaje cotidiano y algebraico.

a. **Cuadrado de la suma o resta de dos cantidades:** Si un binomio se eleva al cuadrado, la potencia obtenida consiste en el cuadrado del primer término, más o menos (dependiendo del binomio) el doble producto de los términos del binomio más el cuadrado del segundo término. En lenguaje algebraico podemos decir que, dado el binomio de términos \(a\) y \(b\) se cumple:

\[
(a + b)^2 = a^2 + 2ab + b^2
\]

\[
(a - b)^2 = a^2 - 2ab + b^2
\]

Nota:
1. Los extremos siempre son positivos, ya que el cuadrado de cualquier expresión real, positiva o negativa, siempre es positivo.
2. El segundo término del trinomio resultante tiene el signo del segundo término del binomio.
3. Este producto notable, como todos los demás, se pueden verificar desarrollando el producto como vimos en la sección anterior.
- Ejemplo: desarrollar la potencia \((2x + 3z)^2\)

Solución: de acuerdo a las fórmulas anteriores, hacemos la analogía \(a = 2x\) y \(b = 3z\). Tenemos entonces que

\[
(2x + 3z)^2 = (2x)^2 + 2(2x)(3z) + (3z)^2
\]

\[
(2x + 3z)^2 = 4x^2 + 12xz + 9z^2
\]

- Ejemplo: desarrollar la potencia \((5m^2 - 4n^3)^2\)

Solución: de acuerdo a la fórmula, dado que el binomio es una resta tenemos que

\[
(5m^2 - 4n^3)^2 = (5m^2)^2 - 2(5m^2)(4n^3) + (4n^3)^2
\]

\[
(5m^2 - 4n^3)^2 = 25m^4 - 40m^2n^3 + 16n^6
\]

- Ejemplo: desarrollar la potencia \(\left(\frac{2}{9} h^4 + \frac{5}{8} u^5\right)^2\)

Solución: utilizaremos las propiedades de las operaciones entre números racionales y la fórmula de este producto notable para obtener

\[
\left(\frac{2}{9} h^4 + \frac{5}{8} u^5\right)^2 = \left(\frac{2}{9} h^4\right)^2 + 2\left(\frac{2}{9} h^4\right)\left(\frac{5}{8} u^5\right) + \left(\frac{5}{8} u^5\right)^2
\]

\[
\left(\frac{2}{9} h^4 + \frac{5}{8} u^5\right)^2 = \frac{4}{81} h^8 + \frac{5}{18} h^4 u^5 + \frac{25}{64} u^{10}
\]

b. Suma por diferencia de dos cantidades: si se multiplica la suma por la diferencia de las mismas dos cantidades, el producto obtenido es el cuadrado del primer término menos el cuadrado del segundo término. En lenguaje algebraico, lo anterior se puede expresar así:

\[
(a + b)(a - b) = a^2 - b^2
\]

Nota: Nuevamente, a y b representa un término algebraico y no solo la parte literal de este.

Veamos algunos ejemplos.
- Desarrollar \((5x + 4f)(5x - 4f)\)

Solución: notemos que en ambos paréntesis se encuentran los mismos términos con las operaciones suma y resta, por tanto, cumplen la característica de este producto notable. Veamos:

\[
(5x + 4f)(5x - 4f) = (5x)^2 - (4f)^2
\]

\[
(5x + 4f)(5x - 4f) = 25x^2 - 16f^2
\]

- Desarrollar \((-\frac{3}{7}m^6 - \frac{9}{11}p^5)(\frac{3}{7}m^6 + \frac{9}{11}p^5)\)

Solución: identificando la misma característica del ejemplo anterior, procedamos a aplicar la fórmula.

\[
\left(-\frac{3}{7}m^6 - \frac{9}{11}p^5\right)\left(\frac{3}{7}m^6 + \frac{9}{11}p^5\right) = \left(\frac{3}{7}m^6\right)^2 - \left(\frac{9}{11}p^5\right)^2
\]

\[
\left(-\frac{3}{7}m^6 - \frac{9}{11}p^5\right)\left(\frac{3}{7}m^6 + \frac{9}{11}p^5\right) = \frac{9}{49}m^{12} - \frac{81}{121}p^{10}
\]

- Desarrollar \((5a^7b^3 + 8r^9t^4)(8r^9t^4 - 5a^7b^3)\)

Solución: vemos que, aunque en ambos paréntesis están los dos términos, en el primer paréntesis, el sumando de adelante es el sustraendo del segundo paréntesis. Para que el producto tenga la forma que hemos venido desarrollando, es preciso que los términos del primer paréntesis se intercambien, aprovechando que en la suma, el orden de sus términos no altera el resultado.

\[
(8r^9t^4 + 5a^7b^3)(8r^9t^4 - 5a^7b^3) = (8r^9t^4)^2 - (5a^7b^3)^2
\]

\[
(8r^9t^4 + 5a^7b^3)(8r^9t^4 - 5a^7b^3) = 64r^{18}t^8 - 25a^{14}b^6
\]

c. **Producto de la forma** \((x + a)(x + b)\): en este tipo de producto, notemos que en ambos factores hay un término que se repite. Es precisamente este término el que permite identificar el producto notable y la fórmula que se debe aplicar. El producto obtenido aquí consiste en el cuadrado del término repetido, más la suma de los términos diferentes multiplicada por el término, más el producto de los términos diferentes. Veamos la expresión algebraica correspondiente:

\[
(x + a)(x + b) = x^2 + (a + b)x + ab
\]
Desarrollemos algunos productos de este tipo:

- Desarrollar \((x + 2)(x + 3)\)

Solución: el término repetido en este caso es \(x\) mientras que los no repetidos son 2 y 3. Apliquemos la fórmula de arriba.

\[(x + 2)(x + 3) = (x)^2 + (2 + 3)(x) + (2)(3)\]

\[(x + 2)(x + 3) = x^2 + 5x + 6\]

Nota: En el producto anterior encerramos todos los términos en paréntesis para indicar que no siempre es una letra o un número. En adelante solo los utilizaremos donde sea necesario.

- Desarrollar \((5m^3 - 4)(5m^3 + 7)\)

Solución: el término repetido en este caso es \(5m^3\). Veamos cómo queda el producto a partir de la fórmula.

\[(5m^3 - 4)(5m^3 + 7) = (5m^3)^2 + (-4 + 7)(5m^3) + (-4)(7)\]

\[(5m^3 - 4)(5m^3 + 7) = 25m^6 + 3(5m^3) + (-28)\]

\[(5m^3 - 4)(5m^3 + 7) = 25m^6 + 15m^3 - 28\]

- Desarrollar \(\left(\frac{2}{3}y^5 - 8\right)\left(2 + \frac{2}{3}y^5\right)\)

Solución: utilicemos nuevamente la alteración del orden de los sumandos del segundo paréntesis para que el producto quede con la misma estructura que venimos desarrollando.

\[\left(\frac{2}{3}y^5 - 8\right)\left(\frac{2}{3}y^5 + 2\right) = \left(\frac{2}{3}y^5\right)^2 + (-8 + 2)\left(\frac{2}{3}y^5\right) + (-8)(2)\]

\[\left(\frac{2}{3}y^5 - 8\right)\left(\frac{2}{3}y^5 + 2\right) = \frac{4}{9}y^{10} + (-6)\left(\frac{2}{3}y^5\right) + (-16)\]

\[\left(\frac{2}{3}y^5 - 8\right)\left(\frac{2}{3}y^5 + 2\right) = \frac{4}{9}y^{10} - 4y^5 - 16\]
d. Cubo de la suma o diferencia de dos cantidades: en el desarrollo de esta potencia siempre habrán 4 términos: el cubo del primer término; el triple del producto entre el cuadrado del primer término, por el segundo; el triple del producto del primer término, por el cuadrado del segundo; y el cubo del segundo término. En cuanto a los signos, este polinomio tendrá todos sus signos positivos si el binomio es una suma y sus signos alternados si el binomio es una resta. Veamos las expresiones algebraicas descritas hasta ahora bajo estas condiciones:

\[(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\]
\[(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\]

Nota:
1. Recordemos que según la fórmula, a y b es cualquier par de términos algebraicos.
2. Recordemos también que el signo de una potencia cúbica tendrá el mismo signo de la base, por tanto es de gran utilidad el uso de los paréntesis al momento de expresar los productos.

Veamos algunos ejemplos:

- Desarrollar la potencia \((5p + 4d)^3\)

Solución: utilicemos la primera de las dos fórmulas para obtener:

\[(5p + 4d)^3 = (5p)^3 + 3(5p)(4d)^2 + 3(5p)(4d)^2 + (4d)^3\]

Recordemos que, según la jerarquía de las operaciones que abordamos anteriormente, primero desarrollamos las potencias y después los productos.

\[(5p + 4d)^3 = 125p^3 + 300p^2d^2 + 240pd^2 + 64d^3\]

- Desarrollar la potencia \((3x^2 - 2y^5)^3\)

Solución: utilicemos la segunda de las dos fórmulas:

\[(3x^2 - 2y^5)^3 = (3x^2)^3 - 3(3x^2)(2y^5)^2 + 3(3x^2)(2y^5)^2 - (2y^5)^3\]
\[(5p + 4d)^3 = 27x^6 - 3(9x^4)(2y^5) + 3(3x^2)(4y^{10}) - 8y^{15}\]
\[(5p + 4d)^3 = 27x^6 - 54x^4y^5 + 36x^2y^{10} - 8y^{15}\]

- Desarrollar la potencia \(\left(-\frac{4}{5}c^2r^7 + \frac{2}{9}k^6t^4\right)^3\)

Solución: hay dos formas de desarrollar la potencia: si dejamos los dos términos como están, aplicamos la fórmula para la suma; si invertimos los términos, queda una resta y aplicamos la segunda fórmula. En este caso aplicaremos la primera forma, quedándole al lector el comprobar la segunda estrategia.

\[
\left(-\frac{4}{5}c^2r^7 + \frac{2}{9}\right)^3 = \left(-\frac{4}{5}c^2r^7\right)^3 + 3\left(-\frac{4}{5}c^2r^7\right)^2 \left(\frac{2}{9}\right) + 3\left(-\frac{4}{5}c^2r^7\right)\left(\frac{2}{9}\right)^2 + \left(\frac{2}{9}\right)^3
\]

\[
\left(-\frac{4}{5}c^2r^7 + \frac{2}{9}\right)^3 = -\frac{64}{125}c^6r^{21} + 3\left(\frac{16}{25}c^4r^{14}\right)\left(\frac{2}{9}\right) + 3\left(-\frac{4}{5}c^2r^7\right)\left(\frac{4}{81}\right) + \frac{8}{729}
\]

Cocientes notables: de manera análoga a los productos notables, decimos que un cociente es notable, si es posible realizarlo sin necesidad de efectuar la división completamente, es decir, por simple inspección. Dada su aplicación y aparición en la factorización, conceptualizaremos un solo cociente notable: **suma o diferencia de los cubos de dos cantidades entre la suma o diferencia de ellas.** Veamos las expresiones algebraicas correspondientes:

\[
\frac{a^3 + b^3}{a + b} = a^2 - ab + b^2
\]

\[
\frac{a^3 - b^3}{a - b} = a^2 + ab + b^2
\]

Desarrollemos estas dos divisiones

\[
\begin{align*}
a^3 & \quad +b^3 \\
-a^3 & \quad -a^2b \\
-a^2b & \quad a^2b \\
+ab^2 & \quad +ab^2 \\
-ab^2 & \quad -b^3
\end{align*}
\]

\[
\frac{a + b}{a^2 - ab + b^2}
\]
\[
\begin{array}{ccc}
 a^3 & -b^3 \\
-a^3 & +a^2b & \frac{a-b}{a^2+ab+b^2} \\
+ab^2 & b^2 & \\
-ab^2 & b^2 & \\
\end{array}
\]

Notemos que en ambos casos el cociente consiste en el cuadrado del primer término más o menos el producto de ambos factores más el cuadrado del segundo término. Si entre los cubos hay una suma, el cociente tiene los signos alternados; y si es una resta, todos los términos del cociente son positivos.

Veamos algunos ejemplos:

- Realizar el cociente \(\frac{64p^6 + 1331a^{12}}{4p^2 + 11a^4} \)

Solución: notemos que los términos que se encuentran en el denominador son las raíces cúbicas de los que se encuentran en el numerador respectivamente. Aplicando la primera de las fórmulas expuestas arriba tenemos que

\[
\frac{64p^6 + 1331a^{12}}{4p^2 + 11a^4} = (4p^2)^2 - (4p^2)(11a^4) + (11a^4)^2
\]

\[
\frac{64p^6 + 1331a^{12}}{4p^2 + 11a^4} = 16p^4 - 44p^2a^4 + 121a^8
\]

- Realizar el cociente \(\frac{8s^{15} - 512s^{18}}{2\frac{3}{7}s^5 - \frac{8}{7}t^6} \)

Solución: apliquemos la segunda fórmula, luego de notar que los términos del denominador son raíces cúbicas de los términos del numerador.

\[
\frac{8s^{15} - 512s^{18}}{2\frac{3}{7}s^5 - \frac{8}{7}t^6} = \left(\frac{2}{3}s^5\right)^2 + \left(\frac{2}{3}s^5\right)\left(\frac{8}{7}t^6\right) + \left(\frac{8}{7}t^6\right)^2
\]
\[
\frac{8}{27} s^{15} - \frac{512}{343} t^{18} = \frac{4}{9} s^{10} + \frac{16}{21} s^5 t^6 + \frac{64}{49} t^{12}
\]

Resumen: la siguiente tabla resume los productos y cocientes notables abordados hasta ahora.

| Productos Notables | Cuadrado de la suma o diferencia de dos cantidades | \((a + b)^2 = a^2 + 2ab + b^2\)
| | \((a - b)^2 = a^2 - 2ab + b^2\)
| Suma por diferencia de dos cantidades | \((a + b)(a - b) = a^2 - b^2\)
| Producto de la forma \((x + a)(x + b)\) | \((x + a)(x + b) = x^2 + (a + b)x + ab\)
| Cubo de la suma o diferencia de dos cantidades | \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\)
| | \((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\)
| Cociente Notable | Suma o diferencia de los cubos de dos cantidades dividida entre la suma o diferencia de ellas. |
| | \(\frac{a^3 + b^3}{a + b} = a^2 - ab + b^2\)
| | \(\frac{a^3 - b^3}{a - b} = a^2 + ab + b^2\)

EJERCICIOS PROPUESTOS:

A continuación se presentan algunos productos y cocientes. Determine a cuál de los anteriores corresponde y aplique la correspondiente fórmula. Recuerde que puede verificar el resultado realizando el respectivo producto o cociente de manera completa.

1. \(\left(\frac{5}{3}a^2 + \frac{2}{7}b^{-3}\right)^2\)
2. \(\left(\frac{5}{11} + \frac{8}{5}m^4\right)\left(\frac{8}{5}m^4 - \frac{2}{31}\right)\)
3. \(\frac{1000a^6 - \frac{1}{64}b^9}{4b^3 + 10a^2}\)
4. \(\left(\frac{2}{3}x^3 + \frac{7}{5}b^4\right)\left(\frac{7}{5}b^4 - \frac{2}{3}x^3\right)\)
5. \((7k^2 - 3)(4 + 7k^2)\)
6. \(\left(\frac{8}{5}n^4 - \frac{5}{9}b^7\right)^3\)
2.5 Factorización de Polinomios

Concepto de Factorizar: factorizar algo es, en pocas palabras, *convertir en factores*, es decir, consiste en expresar dicho objeto como un producto. Bajo esta conceptualización, no solo se factorizan polinomios, ya que una actividad tan común en matemáticas como *descomponer en factores* un número entero, no es
más que factorizarlo. Por ejemplo, si quisiéramos factorizar completamente al número 15, expresaríamos tal resultado como:

\[15 = 5 \times 3 \times 1 \]

En este orden de ideas, abordaremos la factorización de polinomios como el procedimiento algebraico que lo transforma en un producto de dos o más factores. En este texto factorizaremos los polinomios con base en la cantidad de términos que contiene el mismo, es decir, factorizaremos bajo el criterio de extensión del polinomio. Sin embargo, dada su aplicación en todos los procedimientos para factorizar, trataremos primero el factor común.

Factor común: cuando pretendemos factorizar un polinomio, lo primero que debemos analizar es si tiene un factor común. Este se define como una expresión algebraica que puede dividir a todos los términos de un polinomio simultáneamente.

Para encontrar el factor común de un polinomio basta hallar el Máximo Común Divisor (MCD) de los coeficientes, y las variables repetidas con menor exponente. Hallado este factor común, abrimos un signo de agrupación y en él se escriben los cocientes resultantes de dividir cada término del polinomio entre el factor común encontrado. Los siguientes ejemplos ilustrarán este proceso.

- Factorizar el polinomio \(27a^3b^5c^4 - 18a^2b^6 + 12a^6b^4 \)

Solución: como lo mencionamos anteriormente, lo primero que debemos discutir es si el polinomio tiene factor común. Para encontrarlo, analicemos si los coeficientes 27, 18 y 12 tienen un MCD, lo cual es cierto, ya que MCD=3. Por otro lado, vemos que las letras que están repetidas en todo el polinomio son a y b, y que sus menores exponentes son, respectivamente, 2 y 4. Con esta información procedamos a factorizar:

\[
27a^3b^5c^4 - 18a^2b^6 + 12a^6b^4 = 3a^2b^4(9abc^4 - 6b^2 + 4a^4)
\]

Notemos que el polinomio que se encuentra en el paréntesis está compuesto por los resultados de dividir cada término del polinomio inicial entre \(3a^2b^4\)
Factorizar \(18m^5n^5p^5 - 24m^3n^7p^7 + 18m^7n^4p^{10} + 30m^4n^4p^9\)

Solución: el número que divide a todos los coeficientes del polinomio es 6, mientras que las letras repetidas en todo el polinomio son m, n y p con sus exponentes 3, 4 y 5 respectivamente. Veamos:

\[
18m^5n^5p^5 - 24m^3n^7p^7 + 18m^7n^4p^{10} + 30m^4n^4p^9 = 6m^3n^4p^5(3m^2n - 4n^2p^2 + 3m^4p^5 + 5mp^4)
\]

Factorizar \((5x - 3)(4y^2 + 3) + (5x - 3)(y + 5) - (5x - 3)(2y - 7)\)

Solución: este polinomio posee 3 términos, y vemos que tiene a \((5x - 3)\) repetido en él; por lo tanto este es el factor común del trinomio. Escribamos dentro de corchetes, los paréntesis “sobrantes”.

\[
(5x - 3)(4y^2 + 3) + (5x - 3)(y + 5) - (5x - 3)(2y - 7)
= (5x - 3)[(4y^2 + 3) + (y + 5) - (2y - 7)]
\]

Ahora eliminemos los signos de agrupación de acuerdo a lo abordado anteriormente.

\[
(5x - 3)(4y^2 + 3) + (5x - 3)(y + 5) - (5x - 3)(2y - 7)
= (5x - 3)[4y^2 + 3 + y + 5 - 2y + 7]
\]

\[
(5x - 3)(4y^2 + 3) + (5x - 3)(y + 5) - (5x - 3)(2y - 7) = (5x - 3)[4y^2 - y + 15]
\]

Nota: en adelante, diremos que “no hay factor común” cuando verifiquemos que no se puede extraer un divisor común diferente de 1.

Si bien sabemos que el 1 es factor común de todos los números reales, en este caso se omite sacarlo si este es el único que hay.
Factorización de Binomios: cuando el polinomio que se desea factorizar tiene dos términos, debemos analizar en primer lugar si este tiene factor común. Luego de obtener este factor común, o en caso de no haberlo, los procedimientos sugeridos son los siguientes:

a. **Diferencia de Cuadrados perfectos:** para que un binomio se pueda factorizar como una diferencia de cuadrados perfectos se debe cumplir que a ambos términos se les puede extraer raíz cuadrada y, obviamente, estar planteado como una diferencia. Cumplidas estas dos condiciones, basta abrir dos paréntesis, escribir las raíces de los dos términos, separados en uno con signo más y en el otro con signo menos. En lenguaje algebraico tenemos que:

\[a^2 - b^2 = (a + b)(a - b) \]

Algunos ejemplos nos ilustrarán mejor este procedimiento:

- Factorizar \(25x^4 - 121y^{10} \)

Solución: analicemos primero si el binomio tiene factor común: vemos que el MCD de 25 y 121 es 1 y que no hay letras repetidas. Por lo tanto no se puede extraer un factor común. Por otro lado, notemos que este binomio es una diferencia y que los dos términos tienen raíz cuadrada: \(5x^2 \) y \(11y^5 \) respectivamente; por tanto, esta es una diferencia de cuadrados perfectos.

En primer lugar abramos dos paréntesis ubicando las raíces en ambos

\[25x^4 - 121y^{10} = (5x^2 + 11y^5)(5x^2 - 11y^5) \]

Nota:

1. En adelante, omitiremos el primer paso que explicamos e iremos directamente al segundo.
2. Si nos fijamos bien, este caso de factorización es el procedimiento inverso del segundo producto notable \((a+b)(a-b)\), lo cual nos lleva a indicar que la factorización y el producto notable son procesos inversos. Más adelante veremos más de estas relaciones entre ambas operaciones.
3. En este objeto de aprendizaje estamos asumiendo que ambos términos tienen raíz cuadrada “exacta”, es decir, que se puede expresar como un número racional. Si no aclaramos esto, podríamos decir que cualquier resta puede ser una diferencia de cuadrados perfectos, ya que \(a - b = (\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) \). Es decir, cualquier número positivo tiene raíz cuadrada, la cuestión es que no todas son enteras o racionales.
• Factorizar \(\frac{100}{49}a^{12} - \frac{81}{4}b^{14} \)

Solución: notamos en este binomio que no hay factor común; por otro lado, está expresada una resta entre dos términos que tienen raíz cuadrada. Por lo tanto este binomio es una diferencia de cuadrados perfectos. Veamos

\[
\frac{100}{49}a^{12} - \frac{81}{4}b^{14} = \left(\frac{10}{7}a^6 + \frac{9}{2}b^7\right)\left(\frac{10}{7}a^6 - \frac{9}{2}b^7\right)
\]

• Factorizar \(48xc^4 - 75x^3f^2 \)

Solución: si quisiéramos extraer raíces sospechando que es una diferencia de cuadrados perfectos, nos encontraríamos con que ambos no la tienen exacta. Por esto es tan importante verificar primero si hay o no factor común. En este binomio, por ejemplo, vemos que ambos números son divisibles por 3 y que la \(x \) está repetida. Veamos:

\[
48xc^4 - 75x^3f^2 = 3x(16c^4 - 25x^2f^2)
\]

Fijémonos que dentro del paréntesis ya los términos tienen raíz, por tanto es una diferencia de cuadrados perfectos.

\[
48xc^4 - 75x^3f^2 = 3x(4c^2 + 5xf)(4c^2 - 5xf)
\]

• Factorizar \(- (5p - 4)^2 + (p^2 + 3)^2\)

Solución: fijémonos en primer lugar que el binomio, aunque tiene un signo positivo en la mitad, tiene un término negativo, por tanto podríamos reescribirlo para que quede indicada una resta:

\[
(p^2 + 3)^2 - (5p - 4)^2
\]

Ahora, notemos que ambos paréntesis están elevados al cuadrado, por tanto tienen raíz cuadrada. Factoricemos esta diferencia de cuadrados perfectos y luego eliminemos los signos de agrupación. Veamos

\[
(p^2 + 3)^2 - (5p - 4)^2 = [(p^2 + 3) + (5p - 4)][(p^2 + 3) - (5p - 4)]
\]

\[
(p^2 + 3)^2 - (5p - 4)^2 = [p^2 + 3 + 5p - 4][p^2 + 3 - 5p + 4]
\]
\[(p^2 + 3)^2 - (5p - 4)^2 = [p^2 + 5p - 1][p^2 - 5p + 7]\]

b. Suma o diferencia de cubos perfectos: en algunos casos, es posible que al analizar los términos de un binomio estos no tengan raíz cuadrada racional. Verificado esto, debemos mirar si estos tienen o no raíz cúbica; si este caso se presenta, diremos que el binomio es una **suma o diferencia de cubos**, el cual se puede factorizar como explicaremos a continuación:

En un primer paréntesis escribiremos las dos raíces cúbicas con el signo que tiene el binomio, el cual puede ser + o -. En el segundo paréntesis escribiremos: el cuadrado de la primera raíz, el producto de las raíces y el cuadrado de la segunda raíz. Si el binomio era una suma, los signos de este segundo paréntesis se alternan; si es una resta, todos serán positivos. Veamos las expresiones algebraicas para cada caso y algunos ejemplos.

\[a^3 + b^3 = (a + b)(a^2 - ab + b^2)\]

\[a^3 - b^3 = (a - b)(a^2 + ab + b^2)\]

- Factorizar \(8m^9 + 343k^6\)

Solución: en este binomio, como bien podemos apreciar, no hay un factor común diferente de 1; por otro lado, podríamos descartar que sea una diferencia de cuadrados perfectos, puesto que el binomio es una suma. Notemos finalmente, que ambos términos tienen raíz cúbica. Como en el caso anterior, explicaremos paso por paso la factorización de este polinomio: abramos dos paréntesis y escribamos en un primer paréntesis las dos raíces.

\[8m^9 + 343k^6 = (2m^3 + 7k^2)(\quad)\]

Escribamos ahora el cuadrado de la primera raíz, el producto de las raíces y el cuadrado de la segunda raíz.

\[8m^9 + 343k^6 = (2m^3 + 7k^2)(4m^6 - 14m^3k^2 + 49k^4)\]

Finalmente, como el binomio es una suma, alternemos los signos del primer paréntesis.

\[8m^9 + 343k^6 = (2m^3 + 7k^2)(4m^6 - 14m^3k^2 + 49k^4)\]
Nota: recordemos que para hallar la raíz de una expresión algebraica extraemos esta del coeficiente y dividimos el exponente de la parte literal entre el índice de la raíz. Por ejemplo: para hallar la raíz cúbica de $343k^6$, obtuvimos $7k^2$ ya que $\sqrt[3]{343} = 7$ y $6 ÷ 3 = 2$.

- Factorizar $\frac{1331}{1728}h^{15} - \frac{729}{64}p^{12}$

Solución: notemos que no podemos extraer un factor común; además, los términos no tienen raíz cuadrada. Nos queda entonces por verificar que ambos términos tienen raíz cúbica, lo cual es cierto. Procedamos a factorizar:

$$\frac{1331}{1728}h^{15} - \frac{729}{64}p^{12} = \left(\frac{11}{12}h^5 - \frac{9}{4}p^4\right)\left(\frac{121}{144}h^{10} + \frac{99}{48}h^5p^4 + \frac{81}{16}p^8\right)$$

La fracción del medio del segundo paréntesis es simplificable:

$$\frac{1331}{1728}h^{15} - \frac{729}{64}p^{12} = \left(\frac{11}{12}h^5 - \frac{9}{4}p^4\right)\left(\frac{121}{144}h^{10} + \frac{33}{16}h^5p^4 + \frac{81}{16}p^8\right)$$

- Factorizar $1024g^5t^6 + 54g^2u^3$

Solución: a primera vista parece que este binomio no cumple con ninguna de las condiciones de estos dos casos vistos. Sin embargo, fijémonos que ambos números son divisibles por 2 y la letra g está repetida con exponente mínimo 2. Veamos

$$1024g^5t^6 + 54g^2u^3 = 2g^2(512t^6 + 27u^3)$$

Ahora, notemos que los términos dentro del paréntesis tienen raíz cúbica.

$$1024g^5t^6 + 54g^2u^3 = 2g^2(8t^2 + 3u)(64t^4 - 24t^2u + 9u^2)$$

- Factorizar $64x^6 - 729y^{12}$

Solución: si nos fijamos, los términos tienen tanto raíz cuadrada como raíz cúbica; por lo tanto podríamos aplicar cualquiera de los casos anteriores. Sin embargo, consideramos más práctico factorizar como diferencia de cuadrados
perfectos, y luego como diferencia de cubos perfectos (aunque el orden no afecta el resultado final).

\[64x^6 - 729y^{12} = (8x^3 + 27y^6)(8x^3 - 27y^6)\]

Ahora, cada uno de los paréntesis resultantes es una suma y diferencia de cubos perfectos respectivamente. Factoricemos:

\[64x^6 - 729y^{12} = (2x + 3y^2)(4x^2 - 6xy^2 + 9y^4)(2x - 3y^2)(4x^2 + 6xy^2 + 9y^4)\]

- Factorizar \((5x + 3)^3 + (8x^2 - 5)^3\)

Solución: cada uno de los paréntesis está elevado al cubo, por tanto este binomio se puede factorizar como una suma de cubos perfectos.

\[(5x + 3)^3 + (8x^2 - 5)^3 = [(5x + 3) + (8x^2 - 5)][(5x + 3)^2 + (8x^2 - 5)(5x + 3) + (8x^2 - 5)^2] \]

Desarrollemos los productos (notemos que en el segundo signo de agrupación hay dos binomios al cuadrado: apliquemos allí el primer producto notable de la sección anterior).

\[(5x + 3)^3 + (8x^2 - 5)^3 = (5x + 3 + 8x^2 - 5)[(25x^2 + 30x + 9) - (40x^3 + 24x^2 - 25x - 15) + (64x^4 - 80x^2 + 25)] \]

\[(5x + 3)^3 + (8x^2 - 5)^3 = (8x^2 + 5x - 2)(25x^2 + 30x + 9 - 40x^3 - 24x^2 + 25x + 15 + 64x^4 - 80x^2 + 25) \]

\[(5x + 3)^3 + (8x^2 - 5)^3 = (8x^2 + 5x - 2)(64x^4 - 40x^3 - 79x^2 + 55x + 49) \]

RESUMEN PARA LA FACTORIZACIÓN DE BINOMIOS

Para Factorizar un binomio se debe analizar estos tres aspectos ordenadamente:

1. ¿Los términos tienen factor común? En caso afirmativo lo extraemos, y continuamos con la siguiente pregunta. Si no tienen factor común pasamos directamente al segundo aspecto.
2. ¿Los términos tienen raíz cuadrada? De ser afirmativo aplicamos la diferencia de cuadrados perfectos. En caso contrario continuamos con el siguiente aspecto.
3. ¿Los términos tienen raíz cúbica? En este caso, luego de verificar su veracidad, aplicamos la suma o diferencia de cubos.
Factorización de Trinomios: cuando el polinomio que se desea factorizar tiene tres términos, debemos analizar en primer lugar si este tiene factor común. Luego de obtener este factor común, o en caso de no haberlo, los procedimientos sugeridos son los siguientes:

a. Trinomio Cuadrado perfecto: si luego de analizar la existencia de un factor común en un trinomio se verifica que:
- Dos de los términos son positivos y tienen raíz cuadrada “exacta”.
- El tercer término es el doble del producto de las raíces encontradas.

Entonces este polinomio recibe el nombre de Trinomio Cuadrado Perfecto. Para factorizarlo, luego de verificar lo anterior, basta escribir en un paréntesis al cuadrado, las raíces encontradas con el signo del término que representa el doble. Veamos la expresión algebraica y algunos ejemplos:

\[a^2 + 2ab + b^2 = (a + b)^2 \]
\[a^2 - 2ab + b^2 = (a - b)^2 \]

Nota: como expresamos arriba, y según las expresiones algebraicas anteriores, los términos que están al cuadrado son positivos y es el signo del término central (en este caso el que representa al doble de las raíces), el que determina el signo en el paréntesis final.

- Factorizar \(25m^4 - 40m^2n^4 + 16n^8\)

Solución: en este trinomio notamos que no hay un factor común diferente de 1. Verifiquemos las condiciones del trinomio para ver si es cuadrado perfecto:
- Los términos \(25m^4\) y \(16n^8\) tienen raíces cuadradas exactas, las cuales son respectivamente \(5m^2\) y \(4n^4\).
- Efectuemos el doble del producto para verificar si es el término faltante:
 \(2(5m^2)(4n^4) = 40m^2n^4\) Vemos entonces que sí es el término del medio.

Lo anterior nos permite concluir que el trinomio es cuadrado perfecto. Para factorizarlo, ubicamos en un paréntesis al cuadrado las raíces encontradas, con el signo -, el cual le pertenecía a \(-40m^2n^4\), el término central.

\[25m^4 - 40m^2n^4 + 16n^8 = (5m^2 - 4n^4)^2\]

Nota: como en la diferencia de cuadrados perfectos, este procedimiento es el inverso del primer producto notable que analizamos en la sección anterior.
- Factorizar $49 + 42b^4c^3 + 9b^8c^6$

Solución: analicemos las condiciones del trinomio cuadrado perfecto, luego de verificar que no hay factor común.

$$
\begin{align*}
49 & \quad +42b^4c^3 \quad +9b^8c^6 \\
\downarrow & \quad \uparrow \quad \downarrow \\
7 & \quad 2(7)(3b^4c^3) \quad 3b^4c^3
\end{align*}
$$

Hemos ubicado bajo los términos de los extremos las raíces cuadradas y bajo el término central el doble del producto de las raíces, que corresponde efectivamente a $42b^4c^3$. Factoricemos

$$49 + 42b^4c^3 + 9b^8c^6 = (7 + 3b^4c^3)^2$$

- Factorizar $\frac{100}{81}k^2h^4 - \frac{16}{3}kh^2m^3g^4 + \frac{144}{25}m^6g^8$

Solución: dado que no hay factor común en este trinomio, analicemos las raíces cuadradas y el término central con el método anterior:

$$
\begin{align*}
\frac{100}{81}k^2h^4 & \quad -\frac{16}{3}kh^2m^3g^4 \quad +\frac{144}{25}m^6g^8 \\
\downarrow & \quad \uparrow \quad \downarrow \\
\frac{10}{9}kh^2 & \quad 2\left(\frac{10}{9}kh^2\right)\left(\frac{12}{5}m^3g^4\right) \quad \frac{12}{5}m^3g^4
\end{align*}
$$

Como todas las condiciones se cumplen, factoricemos el trinomio cuadrado perfecto

$$\frac{100}{81}k^2h^4 - \frac{16}{3}kh^2m^3g^4 + \frac{144}{25}m^6g^8 = \left(\frac{10}{9}kh^2 - \frac{12}{5}m^3g^4\right)^2$$

- Factorizar $m^2 - 2m(m - 3n) + (m - 3n)^2$

Solución: en este trinomio no encontramos un factor común diferente de 1; por lo tanto, analicemos si dos de los términos tienen raíz cuadrada.

$$
\begin{align*}
m^2 & \quad -2m(m - 3n) \quad (m - 3n)^2 \\
\downarrow & \quad \uparrow \quad \downarrow \\
m & \quad 2(m)(m - 3n) \quad (m - 3n)
\end{align*}
$$
Vemos entonces que este trinomio cumple las características de un cuadrado perfecto. Factoricemos bajo este procedimiento

\[m^2 - 2m(m - 3n) + (m - 3n)^2 = [m - (m - 3n)]^2 \]

 Nótese que al interior de los corchetes quedó una operación indicada. Eliminemos los paréntesis:

\[m^2 - 2m(m - 3n) + (m - 3n)^2 = [m - m + 3n]^2 \]

\[m^2 - 2m(m - 3n) + (m - 3n)^2 = [3n]^2 \]

\[m^2 - 2m(m - 3n) + (m - 3n)^2 = 9n^2 \]

b. **Trinomio de la forma** \(x^{2n} + bx^n + c\): cuando el intento de verificar que un trinomio es cuadrado perfecto ha fallado, el procedimiento que sigue es analizar si se puede factorizar como un trinomio de la forma \(x^{2n} + bx^n + c\). Para que un trinomio se pueda descomponer en factores mediante este proceso, este debe cumplir con las siguientes características:

- El trinomio debe tener un término cuya parte literal tenga raíz cuadrada (es decir, exponente par)
- Otro de los términos del trinomio debe tener una parte literal cuyo exponente sea la mitad del exponente del término descrito anteriormente.
- El término que queda no tiene parte literal dependiente de la variable de los términos anteriores.

Debemos tener presente que antes de analizar las características de un trinomio bajo estos parámetros, debemos percatarnos si este tiene factor común y luego si dos de los términos tienen raíz cuadrada; es decir, debemos mantener el orden en los procedimientos para no caer en ambigüedades. Los siguientes ejemplos ilustrarán el procedimiento:

- Factorizar \(x^2 + 5x + 6\)

Solución: vamos a utilizar este ejemplo para indicar los pasos que debemos seguir en todos los trinomios de esta forma:
En primer lugar, notemos que el polinomio no tiene ni factor común y solo uno de los términos tiene raíz cuadrada (esto quiere decir que ni el factor común ni el trinomio cuadrado perfecto aplican)

Notemos por otro lado que: uno de los términos tiene exponente par \(x^2\); otro de ellos tiene un exponente que es la mitad del otro \(5x\) y el término sobrante no depende de \(x\). Todo esto indica que el trinomio es de la forma \(x^{2n} + bx^n + c\).

Factoricemos:

Abramos primero dos paréntesis y ubiquemos la raíz cuadrada de la variable que está al cuadrado.

\[
x^2 + 5x + 6 = (x \quad)(x \quad)
\]

El signo del segundo término va siempre en el primer paréntesis y el producto de los signos del segundo y tercer término va en el segundo paréntesis. En este caso, en el primer paréntesis escribimos + (por el signo de \(5x\)) y en el segundo paréntesis escribimos + (ya que \(+ + = +\))

\[
x^2 + 5x + 6 = (x + \quad)(x + \quad)
\]

Ahora, **como los signos en los paréntesis son iguales**, busquemos dos números que multiplicados den como resultado 6, y sumados den como resultado 5. Estos números son 3 y 2. Ubiquemos el mayor de los números en el primer paréntesis y el menor en el segundo. De esta forma el trinomio queda factorizado así:

\[
x^2 + 5x + 6 = (x + 3)(x + 2)
\]

- Factorizar \(y^2 - 4y - 21\)

Solución: dado que no hay factor común y \(-21\) no tiene raíz cuadrada, pasemos directamente a factorizar como un trinomio de la forma \(x^{2n} + bx^n + c\)

Abramos dos paréntesis y ubiquemos la raíz correspondiente

\[
y^2 - 4y - 21 = (y \quad)(y \quad)
\]

Ubiquemos en el primer paréntesis un signo menos (el de \(-4y\)) y para el segundo paréntesis multipliquemos signos \(- \times - = +\).
\[y^2 - 4y - 21 = (y -)(y +) \]

Como los signos en los paréntesis son diferentes, busquemos dos números que multiplicados den como resultado 21 y restados den como resultado 4. Estos números son 7 y 3.

\[y^2 - 4y - 21 = (y - 7)(y + 3) \]

Nota: los anteriores ejemplos nos permiten generalizar el procedimiento en cuanto a los signos dentro de los paréntesis:
- Si son iguales, los números buscados deben ser sumados.
- Si son diferentes, deben ser restados.

En ambos casos, los números deben tener como producto el término independiente.

En los siguientes ejemplos solo mostraremos el último razonamiento.

- Factorizar \(m^4 - 5m^2 - 36 \)

Solución: aunque los extremos de este trinomio tengan raíz cuadrada, el término que sobra no es el doble del producto de estas raíces. Por lo tanto, analicemos si se puede factorizar con el procedimiento que estamos abordando.

\[m^4 - 5m^2 - 36 = (m^2 -)(m^2 +) \]

Ahora, como los signos son diferentes busquemos dos números que multiplicados den como resultado 36 y restados den como resultado 5. Estos números son 9 y 4.

\[m^4 - 5m^2 - 36 = (m^2 - 9)(m^2 + 4) \]

Aparentemente hemos terminado, pero el binomio del primer paréntesis es una diferencia de cuadrados perfectos. Veamos

\[m^4 - 5m^2 - 36 = (m + 3)(m - 3)(m^2 + 4) \]
Factorizar $3n^5 - 18n^4 - 48n^3$

Solución: notemos que los términos de este trinomio tienen a 3 como MCD de los coeficientes y además la letra n está repetida con menor exponente 3. Extraigamos entonces el factor común.

$$3n^5 - 18n^4 - 48n^3 = 3n^3(n^2 - 6n - 16)$$

Ahora, el trinomio que está al interior del paréntesis es de la forma analizada en los ejercicios de arriba. Veamos

$$3n^5 - 18n^4 - 48n^3 = 3n^3(n - 8)(n + 2)$$

Hemos encontrado dos números que multiplicados dieran como producto 16 y restados den como diferencia 6, o sea 8 y 2.

- Factorizar $g^4 + 18g^2 + 81$

Solución: intentemos abordar este trinomio directamente como si fuera de la forma $x^2n + bx^n + c$

$$g^4 + 18g^2 + 81 = (g^2 + 9)(g^2 + 9)$$

Notemos que, al intentar factorizar con este método hemos encontrado dos paréntesis iguales, lo que quiere decir que **este trinomio era cuadrado perfecto**, el ejemplo anterior es un llamado a seguir un orden para efectuar estos procedimientos.

$$g^4 + 18g^2 + 81 = (g^2 + 9)^2$$

- Factorizar $k^2 + 8k - 1008$

Solución: notemos que 1008 no tiene raíz cuadrada exacta, lo cual nos lleva al trinomio de la forma $x^2n + bx^n + c$. Veamos

$$k^2 + 8k - 1008 = (k +)(k -)$$

Ahora debemos buscar dos números que multiplicados den como resultado 1008 y restados den como diferencia 8. Probablemente nos tomaría tiempo saber cuál es
este par de números. Un método práctico es descomponer el término independiente y formar con los factores dos grupos para tantear las condiciones.

1008	2
504	2
252	2
126	2
63	3
21	3
7	7
1	

Intentemos formar dos grupos con los anteriores factores para ver cuál es la pareja buscada

\[2 \times 2 \times 2 \times 2 \times 3 = 48 \quad 3 \times 7 = 21 \quad 48 - 21 = 27 \text{ No sirven}\]

\[2 \times 2 \times 2 \times 2 = 16 \quad 3 \times 3 \times 7 = 63 \quad 63 - 16 = 47 \text{ No sirven}\]

\[2 \times 2 \times 3 \times 3 = 36 \quad 2 \times 2 \times 7 = 28 \quad 36 - 28 = 8 \text{ Esta es la pareja.}\]

Por tanto la factorización quedará planteada así

\[k^2 + 8k - 1008 = (k + 36)(k - 28)\]

- Factorizar \((2a - b)^2 - 5(2a - b) - 50\)

Solución: vemos que solo uno de los términos de este binomio tiene raíz cuadrada, por lo tanto factoricemos como en los ejemplos anteriores:

\[(2a - b)^2 - 5(2a - b) - 50 = [(2a - b) - 10][(2a - b) + 5]\]

Hemos buscado dos números que multiplicados dieran como resultado 50 y como diferencia 5 (ya que los signos en los corchetes eran diferentes)

\[(2a - b)^2 - 5(2a - b) - 50 = [2a - b - 10][2a - b + 5]\]

c. **Trinomio de la forma** \(a x^{2n} + b x^n + c\): la característica que diferencia este tipo de trinomios del anterior, es que el término que tiene la parte literal con exponente par tiene un coeficiente diferente de 1 y de 0. El procedimiento que
expondremos a continuación también se aplica después del extraer el factor común si los hay y cuando no es posible factorizar el trinomio como cuadrado perfecto.

Para factorizar este tipo de polinomios hay varias técnicas o procedimientos. En este texto abordaremos uno de ellos, dejándole al lector la búsqueda de otros métodos y la elección del que más práctico le parezca.

- Factorizar $2x^2 + 7x + 6$

Solución: como en el caso anterior, utilizaremos este trinomio para mostrar el procedimiento. Notemos primero que no hay ni factor común ni los extremos tienen raíz cuadrada.

Abramos dos paréntesis y escribamos en ambos el coeficiente del término de parte literal con exponente par seguido de la raíz de dicha variable.

$$2x^2 + 7x + 6 = (2x)(2x)$$

Los signos se expresan igual que en el caso anterior, en este caso los dos paréntesis tendrán signo positivo.

$$2x^2 + 7x + 6 = (2x +)(2x +)$$

Ahora **multipliquemos los extremos para obtener** $2 \times 6 = 12$ y con ese número trabajaremos: busquemos dos números que multiplicados den como resultado 12 y como los signos son iguales, que sumados den como resultado 7. Estos números son 4 y 3.

$$2x^2 + 7x + 6 = (2x + 4)(2x + 3)$$

Finalmente, el número que estaba adelante se pasa a dividir al resultado obtenido. De los paréntesis superiores debe salir un factor que se pueda simplificar **siempre** con este número inferior. Saquemos por ejemplo un factor común 2 del primer paréntesis.

$$2x^2 + 7x + 6 = \frac{(2x + 4)(2x + 3)}{2}$$

$$2x^2 + 7x + 6 = \frac{2(x + 2)(2x + 3)}{2}$$
Si bien el procedimiento anterior parece un poco engorroso y largo, es uno de los más directos. Otros métodos se basan en procesos de ensayo y error con los coeficientes dentro de los paréntesis, los cuales también ofrecen una solución correcta pero a veces más demorada que esta. Veamos más ejemplos.

- **Factorizar** $6x^2 - 7x - 3$

Solución: utilizaremos también este trinomio para mostrar el procedimiento. Notemos aquí también que los extremos no tienen raíz cuadrada y no hay tampoco factor común.

Abramos dos paréntesis con $6x$ en cada uno. Los signos serán menos en el primero y más en el segundo (ya que $- \times - = +$)

$$6x^2 - 7x - 3 = (6x -) (6x +)$$

Multipliquemos los extremos para obtener $6 \times 3 = 18$. Busquemos dos números que multiplicados den como producto 18 y restados den como diferencia 7; estos números son 9 y 2.

$$6x^2 - 7x - 3 = (6x - 9)(6x + 2)$$

Dividamos ahora por 6. Del primer paréntesis podemos sacar un factor común 3 y del segundo paréntesis un factor común 2. Veamos

$$6x^2 - 7x - 3 = \frac{(6x - 9)(6x + 2)}{6} = \frac{3(2x - 3)2(3x + 1)}{6} = (2x - 3)(3x + 1)$$

- **Factorizar** $8y^4 - 14y^2 - 9$

Solución: vemos que no hay factor común en este trinomio ni raíces cuadradas en sus términos.

$$8y^4 - 14y^2 - 9 = (8y^2 -) (8y^2 +)$$
Multiplicados los extremos obtenemos $8 \times 9 = 72$. Los dos números que multiplicados dan como producto 72 y restados dan como diferencia 14 son 18 y 4.

$$8y^4 - 14y^2 - 9 = (8y^2 - 18)(8y^2 + 4)$$

$$8y^4 - 14y^2 - 9 = \frac{(8y^2 - 18)(8y^2 + 4)}{8}$$

$$8y^4 - 14y^2 - 9 = \frac{2(4y^2 - 9)4(2y^2 + 1)}{8}$$

$$8y^4 - 14y^2 - 9 = (4y^2 - 9)(2y^2 + 1)$$

Ahora, veamos que en el primer paréntesis hay una diferencia de cuadrados perfectos.

$$8y^4 - 14y^2 - 9 = (2y + 3)(2y - 3)(2y^2 + 1)$$

- Factorizar $25d^2 + 40d + 16$

Solución: intentemos factorizar como un trinomio de la forma que estamos analizando ahora, luego de verificar que no hay factor común.

$$25d^2 + 40d + 16 = (25d +)(25d +)$$

$25 \times 16 = 400$ Los números son 20 y 20.

$$25d^2 + 40d + 16 = (25d + 20)(25d + 20)$$

$$25d^2 + 40d + 16 = \frac{(25d + 20)(25d + 20)}{25}$$

$$25d^2 + 40d + 16 = \frac{5(5d + 4)5(5d + 4)}{25}$$

$$25d^2 + 40d + 16 = (5d + 4)(5d + 4)$$

Con el resultado anterior, podemos observar que el trinomio era cuadrado perfecto.

$$25d^2 + 40d + 16 = (5d + 4)^2$$
Factorizar \(6(5g - 3)^2 - 5(5g - 3) - 6 \)

Solución: luego de verificar que no hay factor común ni raíces cuadradas en los extremos, procedamos a factorizar como un trinomio de los que estamos abordando.

\[
6(5g - 3)^2 - 5(5g - 3) - 6 = \left[6(5g - 3) - \frac{3}{6}\right]\left[6(5g - 3) + \frac{4}{6}\right]
\]

\(6 \times 6 = 36 \) Los números son 9 y 4.

\[
6(5g - 3)^2 - 5(5g - 3) - 6 = \left[6(5g - 3) - 9\right]\left[6(5g - 3) + 4\right]
\]

\[
6(5g - 3)^2 - 5(5g - 3) - 6 = \frac{3[2(5g - 3) - 3]\left[3(5g - 3) + 2\right]}{6}
\]

\[
6(5g - 3)^2 - 5(5g - 3) - 6 = [2(5g - 3) - 3]\left[3(5g - 3) + 2\right]
\]

Ahora eliminemos los signos de agrupación:

\[
6(5g - 3)^2 - 5(5g - 3) - 6 = (10g - 6 - 3)(15g - 9 + 2)
\]

\[
6(5g - 3)^2 - 5(5g - 3) - 6 = (10g - 9)(15g - 7)
\]

RESUMEN PARA LA FACTORIZACIÓN DE TRINOMIOS

Para factorizar un trinomio debemos tener presente las siguientes cuestiones:

1. ¿El trinomio tiene factor común? De ser afirmativo lo extraemos, en caso contrario pasamos a la siguiente cuestión.
2. ¿Dos de los términos tienen raíz cuadrada? ¿El término sobrante es el doble del producto de las raíces encontradas? Factoricemos como trinomio cuadrado perfecto en caso afirmativo; de lo contrario pasamos al siguiente punto.
3. Si no se cumple la cuestión 2 y el coeficiente del término de mayor exponente es 1, factorizamos el trinomio de la forma \(x^{2n} + bx^n + c \).
4. Si no se cumple la cuestión 2 y el coeficiente del término de mayor exponente no es igual a 1, factorizamos como trinomio de la forma \(ax^{2n} + bx^n + c \).

Factorización de Polinomios con 4 o más términos: cuando el polinomio que se desea factorizar tiene cuatro o más términos, nuevamente debemos analizar en primer lugar si existe un factor común. Hallado este factor o luego de verificar que no existe tal, sugerimos seguir los siguientes procedimientos:
a. **Cubo perfecto de binomios**: si en un polinomio de 4 términos se cumple que:

- Dos de los términos tienen raíz cúbica exacta.
- Uno de los otros dos términos es el triple del producto entre el cuadrado de la primera raíz, y la segunda.
- El otro de los dos términos es el triple del producto entre la primera raíz, y el cuadrado de la segunda.

Diremos entonces que este polinomio es el cubo perfecto de un binomio. Para factorizarlo, basta expresar las dos raíces en un paréntesis elevado al cubo; además, si los signos de los términos organizados son alternados, se escribe un signo negativo entre ambas raíces, si todos son positivos, el signo dentro del paréntesis también será positivo. Veamos las expresiones algebraicas y algunos ejemplos:

\[
a^3 + 3a^2b + 3ab^2 + b^3 = (a + b)^3
\]

\[
a^3 - 3a^2b + 3ab^2 - b^3 = (a - b)^3
\]

- **Factorizar** \(8m^3 - 12m^2 + 6m - 1\)

Solución: luego de verificar que no hay factor común, notemos que tanto \(8m^3\) como 1 tienen raíz cúbica exacta. Verifiquemos los otros dos términos.

\[
\begin{array}{cccc}
8m^3 & -12m^2 & +6m & -1 \\
\downarrow & \uparrow & \uparrow & \downarrow \\
2m & 3(2m)^2(1) & 3(2m)(1)^2 & 1
\end{array}
\]

Con el análisis anterior podemos afirmar que el polinomio es un cubo perfecto. Factoricemos notando que los signos están alternados.

\[
8m^3 - 12m^2 + 6m - 1 = (2m - 1)^3
\]

- **Factorizar** \(250x^7 + 450x^5y + 270x^3y^2 + 54xy^3\)

Solución: si nos fijamos en los cuatro términos de este polinomio, notaremos que todos los coeficientes son divisibles por 2, además, la letra \(x\) está repetida con menor exponente 1. Extraigamos el factor común.

\[
250x^7 + 450x^5y + 270x^3y^2 + 54xy^3 = 2x(125x^6 + 225x^4y + 135x^2y^2 + 27y^3)
\]
Ahora, veamos que los extremos del polinomio dentro del paréntesis tienen raíz cúbica. Analicemos entonces esta expresión algebraica.

\[\begin{align*}
125x^6 &+ 225x^4y + 135x^2y^2 + 27y^3 \\
\downarrow &
\uparrow \\
5x^2 &3(5x^2)^2(3y) \\
\downarrow &
\uparrow \\
3(5x^2)^2(3y) &3y
\end{align*} \]

Dado que todos los signos del polinomio son positivos, el binomio será expresado como una suma.

\[250x^7 + 450x^5y + 270x^3y^2 + 54xy^3 = 2x(5x^2 + 3y)^3 \]

Nota: Recordemos que, según la jerarquía de las operaciones que hemos conceptualizado anteriormente, primero debemos hacer la potencia y luego los productos. Por ejemplo, si tenemos \(3(5x^2)(3y)^2\), lo correcto es primero operar el cuadrado, es decir \(3(5x^2)(9y^2)\) y finalmente el producto: \(135x^2y^2\)

- Factorizar \(\frac{8}{27}p^9 - \frac{2}{3}p^6q^4 - \frac{1}{8}q^{12} + \frac{1}{2}p^3q^8\)

Solución: notemos que aunque haya dos términos positivos y dos negativos, estos no están alternados. Organicemos primero al polinomio alternando los términos y verifiquemos que, al no haber factor común, dos de los términos tienen raíz cúbica.

\[\begin{align*}
\frac{8}{27}p^9 &- \frac{2}{3}p^6q^4 + \frac{1}{2}p^3q^8 - \frac{1}{8}q^{12} \\
\downarrow &
\uparrow \\
\frac{2}{3}p^3 &3\left(\frac{2}{3}p^3\right)^2\left(\frac{1}{2}q^4\right) \\
\downarrow &
\uparrow \\
\frac{2}{3}p^3 &3\left(\frac{2}{3}p^3\right)^2\left(\frac{1}{2}q^4\right)^2 \\
\downarrow &
\uparrow \\
\frac{1}{2}q^4 &
\frac{1}{2}q^4
\end{align*} \]

Finalmente,

\[\frac{8}{27}p^9 - \frac{2}{3}p^6q^4 + \frac{1}{2}p^3q^8 - \frac{1}{8}q^{12} = \left(\frac{2}{3}p^3 - \frac{1}{2}q^4\right)^3 \]
• Factorizar \((2a - 3b)^6 + 3(2a - 3b)^4(5b - 4a)^2 + 3(2a - 3b)^2(5b - 4a)^4 + (5b - 4a)^6\)

Solución: extraigamos las raíces cúbicas de los paréntesis de los extremos y veamos si los términos centrales cumplen las condiciones planteadas arriba

\[
\begin{align*}
(2a - 3b)^6 & + 3(2a - 3b)^4(5b - 4a)^2 + 3(2a - 3b)^2(5b - 4a)^4 + (5b - 4a)^6 \\
\downarrow & \uparrow \uparrow \uparrow \\
(2a - 3b)^2 & \left[(2a - 3b)^2 \right]^2 [(5b - 4a)^2] \\
3 & \left[(2a - 3b)^2 \right] [(5b - 4a)^2]^2 \\
& (5b - 4a)^2
\end{align*}
\]

Vemos que las condiciones sí se cumplen, por lo tanto:

\[
(2a - 3b)^6 + 3(2a - 3b)^4(5b - 4a)^2 + 3(2a - 3b)^2(5b - 4a)^4 + (5b - 4a)^6 = [(2a - 3b)^2 + (5b - 4a)^2]^3
\]

Eliminemos los signos de agrupación mediante los productos notables que hay dentro de los corchetes

\[
(2a - 3b)^6 + 3(2a - 3b)^4(5b - 4a)^2 + 3(2a - 3b)^2(5b - 4a)^4 + (5b - 4a)^6 = (4a^2 - 12ab + 9b^2 + 25b^2 - 40ab + 16a^2)^3
\]

Finalmente

\[
(2a - 3b)^6 + 3(2a - 3b)^4(5b - 4a)^2 + 3(2a - 3b)^2(5b - 4a)^4 + (5b - 4a)^6 = (20a^2 - 52ab + 34b^2)^3
\]

b. Factor común por agrupación: en algunos polinomios de 4 o más términos es probable que no todos sus términos tenga un factor común; sin embargo, sí es posible que, al agruparlos convenientemente, surja un factor común binomio o trinomio, el cual posibilita factorizar todo el polinomio en cuestión. Este procedimiento se conoce como factor común por agrupación. Veamos algunos ejemplos.

• Factorizar \(20ax - 5bx + 8ay - 2by\)

Solución: notemos que los cuatro términos del polinomio no tienen factor común. Sin embargo, agrupemos los dos primeros términos y los dos últimos. Para no modificar signos aun, siempre escribiremos un signo positivo entre los paréntesis.

\[
20ax - 5bx + 8ay - 2by = (20ax - 5bx) + (8ay - 2by)
\]
Ahora, fíjémonos que en el primer paréntesis hay factor común al igual que en el segundo. Veamos

\[20ax - 5bx + 8ay - 2by = 5x(4a - b) + 2y(4a - b) \]

En el binomio de arriba, tenemos un factor común \((4a - b)\), por lo tanto podemos terminar de factorizar.

\[20ax - 5bx + 8ay - 2by = (4a - b)(5x + 2y) \]

Cuando el polinomio tiene 4 términos y se puede agrupar para extraer un factor común binomio, siempre habrá dos elecciones acertadas y una que no produce un factor común. Utilizaremos este mismo ejemplo para analizar la segunda alternativa.

Agrupemos ahora el primer y el tercer término en un paréntesis, al igual que el segundo y el cuarto en otro.

\[20ax - 5bx + 8ay - 2by = (20ax + 8ay) + (-5bx - 2by) \]

\[20ax - 5bx + 8ay - 2by = 4a(5x + 2y) + b(-5x - 2y) \]

Notemos que el segundo paréntesis tiene los mismos términos que el primero pero con signos contrarios. Cuando esto ocurra, cambiamos el signo positivo entre los paréntesis por un signo menos y también modificamos los signos de los términos internos. Veamos

\[20ax - 5bx + 8ay - 2by = 4a(5x + 2y) - b(5x + 2y) \]

Ahora sí podemos extraer el factor común \((5x + 2y)\)

\[20ax - 5bx + 8ay - 2by = (5x + 2y)(4a - b) \]

Obteniendo el resultado anterior.

Nota: el “artificio” que realizamos anteriormente al cambiar los signos es consecuencia de la propiedad de los números reales que indica que \(-(a+b)=-a-b\); es decir, de todo paréntesis siempre se puede sacar un signo menos pero se deben cambiar los signos dentro de dicho signo de agrupación.
• Factorizar $8xm - 10xn + 12x + 12ym - 15yn + 18y$

Solución: dado que todo el polinomio no tiene factor común, agrupemos los tres primeros términos en un signo de agrupación y los tres últimos en otro.

\[
8xm - 10xn + 12x + 12ym - 15yn + 18y = (8xm - 10xn + 12x) + (12ym - 15yn + 18y)
\]

Ahora extraigamos de cada paréntesis su respectivo factor común

\[
8xm - 10xn + 12x + 12ym - 15yn + 18y = 2x(4m - 5n + 6) + 3y(4m - 5n + 6)
\]

\[
8xm - 10xn + 12x + 12ym - 15yn + 18y = (4m - 5n + 6)(2x + 3y)
\]

• Factorizar $40x^2 - 24 - 15y^3 + 25x^2y^3$

Solución: agrupemos los dos primeros términos en un paréntesis y los dos últimos en otro.

\[
40x^2 - 24 - 15y^3 + 25x^2y^3 = (40x^2 - 24) + (-15y^3 + 25x^2y^3)
\]

\[
40x^2 - 24 - 15y^3 + 25x^2y^3 = 8(5x^2 - 3) + 5y^3(-3 + 5x^2)
\]

Notemos que la única diferencia entre los dos paréntesis es el orden los términos. Cambiemos dicho orden en uno de ellos para poder factorizar.

\[
40x^2 - 24 - 15y^3 + 25x^2y^3 = 8(5x^2 - 3) + 5y^3(5x^2 - 3)
\]

\[
40x^2 - 24 - 15y^3 + 25x^2y^3 = (5x^2 - 3)(8 + 5y^3)
\]

RESUMEN PARA LA FACTORIZACIÓN DE POLINOMIOS CON 4 O MÁS TÉRMINOS

Para factorizar un polinomio que tenga 4 o más términos sugerimos hacer los siguientes análisis.

1. ¿El polinomio tiene factor común? De ser así lo extraemos, de lo contrario pasamos al siguiente análisis.
2. ¿Dos de los términos tienen raíz cúbica? En este caso verificamos si los otros dos términos cumplen las características de formación del cubo perfecto.
3. ¿Al agrupar los términos podemos obtener un factor común polinomio? En caso afirmativo aplicamos la factorización por agrupación.
Resumen de los casos de factorización: una característica del discurso que acabamos de enunciar es que siempre optamos por analizar en primer lugar si había factor común. Ya dependiendo del número de términos del polinomio abordamos uno u otro caso. El siguiente esquema resume lo que hemos hecho hasta ahora.

![Diagrama de factorización de polinomios](image)

Gráfico 9. Resumen de los casos de factorización por tipo de polinomio

Fuente: propia

EJERCICIOS PROPUESTOS:

En cada uno de los siguientes ejercicios se pide factorizar completamente el polinomio dado.

1) \(x^8 - 1\)
2) \(m^6 - 19m^3 - 216\)
3) \(x^8 - 32x^4 + 256\)
4) \(12b^4 + 31b^2 - 30\)
5) \(5x^2m - 5x^2 + 13xm - 13x + 2m - 2\)
6) $x^4 + x$

7) $10x^6 - 2x^3 - 8$

8) $72m^3 n^2 p + 144m^2 np^4 - 108m^4 n^3 p^5$

9) $(5a - 6b)^3 + 8$

10) $3m^4 - 192p^2$

11) $10mx + 2mx^2 + 12m$

12) $m^6 - 16m^3 + 64$

13) $54m^6 + 108m^4 n^3 + 72m^2 n^6 + 16n^9$

14) $96m^2 c^4 - 328m^2 c^2 + 252m^2$

15) $a^6 - 64m^6$

16) $\frac{5}{4}x - \frac{5}{4}xy^6$

17) $(5m + 2n)^2 - 7(5m + 2n) + 10$

18) $(4k - 1)^3 - 15(4k - 1)^2(2k + 3) + 75(4k - 1)(2k + 3)^2 - 125(2k + 3)^3$

19) $\frac{9}{16}a^2 p + p - \frac{3}{2}ap$

20) $x^4 - 20x^2 + 64$

21) $8m^6 - 64p^9$

22) $6m^2 - 13m + 6$

23) $(x^2 + 1)(y^2 + 3y) - 2(x^2 + 1)(3y + 5)$

24) $(2a + 3b)^2 - (5a - 2b)^2$

25) $-280m^3 - 175m^5 - 112mn^2$

26) $-2ad + be + 2cd + ae - ce + ap + bp - cp - 2bd$

27) $160x^4 + 500x^2 - 135$

28) $-2x^2 + 4x + 30$

29) $(5a - 3b)^2 + 4(2a + b)(5a - 3b) + 4(2a + b)^2$

30) $36p^2 q^3 - 72pq^4 + 54p^3 q^3 + 90p^2 q$

31) $x^3 + 3x^2 + 3x + 1 - y^3$

32) $d^2 p - 4c^2 p + 2d^2 m - 8c^2 m$

33) $11a^3 x^2 b^4 + 132a^2 x^4 b^5 - 121ax^3 b^4 + 77a^4 x^2 b^2$

34) $bm^3 + bm^2 y + bmy^2 - 2bm^2 - 2bmy - 2by^2$

35) $x^3 - y^3 + 3xy^2 - 3x^2 y$

36) $\frac{1331}{8}(2b - 3a)^3 + \frac{1}{27}(5a + b)^3$
Fracciones Algebraicas

Como mencionamos en la sección 2.1 del presente objeto de aprendizaje las fracciones algebraicas son expresiones fraccionarias que poseen polinomios tanto en el numerador como en el denominador. En este apartado abordaremos dichas fracciones desde 5 operaciones básicas: simplificación, suma, resta, multiplicación y división. Adicionalmente, conceptualizaremos sobre aquellas fracciones que poseen expresiones irracionales en el denominador, con las cuales abordaremos una operación llamada racionalización.

Simplificación de fracciones algebraicas: para simplificar una fracción, ya sea numérica o algebraica, basta descomponer en factores tanto al numerador como al denominador con el fin de eliminar los factores que sean comunes entre ambas partes de la fracción. Tal como lo mostramos en el objeto de aprendizaje anterior, todo esto se basa en la propiedad de simplificación, la cual establece que $\frac{ac}{bc} = \frac{a}{b}$.

Notemos que, al expresar como producto al numerador y al denominador, pudimos eliminar el factor c.

En síntesis, para simplificar una fracción algebraica, basta factorizar al numerador y al denominador para posteriormente eliminar el o los factores que sean comunes. Veamos algunos ejemplos.

- Simplificar la fracción $\frac{x^2+5x+6}{x^2-4}$

Solución: siguiendo la indicación dada arriba, simplificaremos tanto al numerador como al denominador. Veamos

$$\frac{x^2 + 5x + 6}{x^2 - 4} = \frac{(x + 3)(x + 2)}{(x - 2)(x + 2)}$$

Revisando el proceso realizado, observamos que el factor $(x + 2)$ está repetido en ambos términos de la fracción. Simplifiquemos.

$\frac{37}{37}x^2(4k^2 + 3) + (5x - 1)(4k^2 + 3) + 7(4k^2 + 3)$

$\frac{38}{38}10x^2 + 6xbc - 20xcd - 12xdb$

$\frac{39}{39}\frac{729}{1600}p^4 - \frac{400}{576}q^8$

$\frac{40}{40}3x^2m^6 - 36x^2m^4n^2 + 144x^2m^2n^4 - 192x^2n^6$
\[
\frac{x^2 + 5x + 6}{x^2 - 4} = \frac{(x + 3)(x + 2)}{(x - 2)(x + 2)}
\]
\[
\frac{x^2 + 5x + 6}{x^2 - 4} = \frac{(x + 3)}{(x - 2)}
\]

Nota: como podrá notar el lector, en este ejemplo y en los siguientes no indicaremos el caso que utilizamos al momento de factorizar. Para revisar los detalles de cómo factorizar un u otro polinomio, sugerimos remitirse a la sección anterior.

- **Simplificar la fracción** \(\frac{a^3 + 4a^2 + 3a}{a^2 + 6a + 9}\)

Solución: factoricemos al numerador y al denominador

\[
\frac{a^3 + 4a^2 + 3a}{a^2 + 6a + 9} = \frac{a(a + 3)(a + 1)}{(a + 3)^2}
\]

Fijémonos que tanto en el numerador como en el denominador está el factor \((a + 3)\), pero como en el denominador está elevado al cuadrado, dejaremos uno de ellos abajo (pues el otro se eliminó con el que estaba arriba)

\[
\frac{a^3 + 4a^2 + 3a}{a^2 + 6a + 9} = \frac{a(a + 1)}{(a + 3)}
\]

- **Simplificar la fracción** \(\frac{m^3 + 1}{m^4 - 1}\)

Solución: factoricemos al numerador y al denominador

\[
\frac{m^3 + 1}{m^4 - 1} = \frac{(m + 1)(m^2 - m + 1)}{(m^2 + 1)(m + 1)(m - 1)}
\]

Ahora eliminemos al factor que se encuentra simultáneamente en las dos partes de la fracción.
\[
\frac{m^3 + 1}{m^4 - 1} = \frac{(m + 1)(m^2 - m + 1)}{(m^2 + 1)(m - 1)}
\]

\[
\frac{m^3 + 1}{m^4 - 1} = \frac{(m^2 - m + 1)}{(m^2 + 1)(m - 1)}
\]

- Simplificar la fracción \(\frac{x^2 + 5x + 6}{x^4 - 13x^2 + 36} \)

Solución: factoricemos completamente al numerador y al denominador

\[
\frac{x^2 + 5x + 6}{x^4 - 13x^2 + 36} = \frac{(x + 3)(x + 2)}{(x + 3)(x - 3)(x + 2)(x - 2)}
\]

Al momento de simplificar, notemos que los dos paréntesis del numerador se van a eliminar, en este caso, dejamos un 1 (se sobreentiende que este está multiplicando siempre a los paréntesis)

\[
\frac{x^2 + 5x + 6}{x^4 - 13x^2 + 36} = \frac{(x + 3)(x + 2)}{(x + 3)(x - 3)(x + 2)(x - 2)}
\]

\[
\frac{x^2 + 5x + 6}{x^4 - 13x^2 + 36} = \frac{1}{(x - 3)(x - 2)}
\]

Suma y resta de fracciones algebraicas: al igual que para las fracciones numéricas, debemos tener claro el concepto de mínimo común múltiplo (mcm) para poder determinar un denominador común. En el caso de las fracciones algebraicas, el mcm de los denominadores, luego de hacer las factorizaciones respectivas será el producto de los factores repetidos y no repetidos con mayor exponente. Para sumar o restar dos fracciones algebraicas recomendamos seguir los siguientes pasos:

- Se factorizan completamente los numeradores y denominadores de las fracciones y se simplifica si es posible.
- Se halla el mcm de los denominadores como se indicó arriba. Este será el denominador común.
- Se divide este mcm entre cada uno de los denominadores iniciales, el cociente obtenido se multiplica por su respectivo numerador.
- Realizamos las multiplicaciones y sumas o restas necesarias.
- Simplificamos la expresión obtenida si es posible.
El primero de los siguientes ejemplos mostrará detalladamente este proceso descrito.

- Realizar la operación \(\frac{5a}{a^2 + 4a + 3} + \frac{3a}{a^2 + a - 6} \)

Solución: vamos en primer lugar a factorizar los polinomios. Como vemos, esto solo se puede hacer en los denominadores.

\[
\frac{5a}{a^2 + 4a + 3} + \frac{3a}{a^2 + a - 6} = \frac{5a}{(a + 3)(a + 1)} + \frac{3a}{(a + 3)(a - 2)}
\]

Ahora, encontremos el mcm de los denominadores: para ello, notemos que los factores que se encuentran repetidos y no repetidos son en su orden \((a + 3)(a + 1)(a - 2)\) y el máximo exponente de cada factor es 1. Este es el mcm. Escribamos una sola fracción con este denominador común.

\[
\frac{5a}{a^2 + 4a + 3} + \frac{3a}{a^2 + a - 6} = \frac{5a}{(a + 3)(a + 1)(a - 2)}
\]

Dividamos este denominador entre cada uno de los denominadores de los sumandos, obteniendo respectivamente \((a - 2)\) y \((a + 1)\). Estos multiplicarán a su respectivo numerador. Veamos

\[
\frac{5a}{a^2 + 4a + 3} + \frac{3a}{a^2 + a - 6} = \frac{5a(a - 2) + 3a(a + 1)}{(a + 3)(a + 1)(a - 2)}
\]

Operemos en el numerador

\[
\frac{5a}{a^2 + 4a + 3} + \frac{3a}{a^2 + a - 6} = \frac{5a^2 - 10a + 3a^2 + 3a}{(a + 3)(a + 1)(a - 2)}
\]

\[
\frac{5a}{a^2 + 4a + 3} + \frac{3a}{a^2 + a - 6} = \frac{8a^2 - 7a}{(a + 3)(a + 1)(a - 2)}
\]

Nota:
1. Una forma práctica de hacer la división entre el denominador común y los denominadores de las fracciones es “quitándole” a este mcm los paréntesis de cada denominador y multiplicar su numerador por lo que “sobra”. Por ejemplo, si le quitamos \((a + 3)(a + 1)\) a \((a + 3)(a + 1)(a - 2)\) sobraría \((a - 2)\) y este se multiplica por 5a.
2. Nótese que aunque \((a + 3)\) esté repetido, solo lo escribimos una sola vez y con el mayor exponente que tenía, en este caso 1.
• Realizar la operación \(\frac{2b}{b^2+6b+9} - \frac{5}{b^2+7b+12} \)

Solución: factoricemos los denominadores.

\[
\frac{2b}{b^2+6b+9} - \frac{5}{b^2+7b+12} = \frac{2b}{(b+3)^2} - \frac{5}{(b+4)(b+3)}
\]

Nótese que el factor \((b+3)\) está repetido, y que su mayor exponente en los denominadores es 2. Tomemos el \(\text{mcm}\) de acuerdo a la indicación anterior.

\[
\frac{2b}{b^2+6b+9} - \frac{5}{b^2+7b+12} = \frac{2b(b+4) - 5(b+3)}{(b+3)^2(b+4)}
\]

\[
\frac{2b}{b^2+6b+9} - \frac{5}{b^2+7b+12} = \frac{2b^2+8b - 5b - 15}{(b+3)^2(b+4)}
\]

\[
\frac{2b}{b^2+6b+9} - \frac{5}{b^2+7b+12} = \frac{2b^2 + 3b - 15}{(b+3)^2(b+4)}
\]

• Realizar la operación \(\frac{5}{x^2+x-56} - \frac{7}{x^2-64} + \frac{10}{x^2-9x+8} \)

Solución: factoricemos los denominadores.

\[
\frac{5}{(x+8)(x-7)} - \frac{7}{(x+8)(x-8)} + \frac{10}{(x-8)(x-1)}
\]

Hallemos el \(\text{mcm}\) de dichos denominadores

\[
\frac{5}{(x+8)(x-7)} - \frac{7}{(x+8)(x-8)} + \frac{10}{(x-8)(x-1)} = \frac{5(x+8)(x-7) - 7(x+8)(x-8) + 10(x+8)(x-7)}{(x+8)(x-7)(x-8)(x-1)}
\]

Ahora dividamos este común denominador entre cada uno de los denominadores de las fracciones iniciales. Los resultados serán multiplicados por su respectivo numerador.

\[
= \frac{5(x-8)(x-1) - 7(x-7)(x-1) + 10(x+8)(x-7)}{(x+8)(x-7)(x-8)(x-1)}
\]
\[
\frac{5 (x^2 - 9x + 8) - 7(x^2 - 8x + 7) + 10(x^2 + x - 56)}{(x + 8)(x - 7)(x - 8)(x - 1)}
= \frac{5x^2 - 45x + 40 - 7x^2 + 56x - 49 + 10x^2 + 10x - 560}{(x + 8)(x - 7)(x - 8)(x - 1)}
\]

\[
\frac{5}{x^2 + x - 56} - \frac{7}{x^2 - 64} + \frac{10}{x^2 - 9x + 8} = \frac{8x^2 + 21x - 569}{(x + 8)(x - 7)(x - 8)(x - 1)}
\]

Multiplicación de fracciones algebraicas: recordando el procedimiento realizado con fracciones numéricas, para multiplicar basta obtener el producto entre los numeradores y el producto entre los denominadores. Al tener estos productos en una sola fracción, procedemos a simplificar si es posible. Veamos algunos ejemplos.

- Realizar la operación \(\frac{f^2 - 8f + 12}{f^2 + 6f + 8} \times \frac{f^2 - 16}{f^2 - 36} \)

Solución: como en los ejercicios anteriores, el primer paso será factorizar los polinomios.

\[
\frac{f^2 - 8f + 12}{f^2 + 6f + 8} \times \frac{f^2 - 16}{f^2 - 36} = \frac{(f - 6)(f - 2)}{(f + 4)(f + 2)} \times \frac{(f + 4)(f - 4)}{(f + 6)(f - 6)}
\]

Ahora, como la multiplicación entre fracciones se hace expresando el producto de los numeradores entre sí y los denominadores entre sí, hagamos estos cálculos

\[
\frac{f^2 - 8f + 12}{f^2 + 6f + 8} \times \frac{f^2 - 16}{f^2 - 36} = \frac{(f - 6)(f - 2)(f + 4)(f - 4)}{(f + 4)(f + 2)(f + 6)(f - 6)}
\]

Simplifiquemos finalmente

\[
\frac{f^2 - 8f + 12}{f^2 + 6f + 8} \times \frac{f^2 - 16}{f^2 - 36} = \frac{(f - 6)(f - 2)(f + 4)(f - 4)}{(f + 4)(f + 2)(f + 6)(f - 6)}
\]

\[
\frac{f^2 - 8f + 12}{f^2 + 6f + 8} \times \frac{f^2 - 16}{f^2 - 36} = \frac{(f - 2)(f - 4)}{(f + 2)(f + 6)}
\]
Realizar la operación \(\frac{x^2-4}{x^2+7x+12} \times \frac{x^2-2x-15}{x^2+5x-14} \times \frac{x^2+8x+16}{2x^2-9x-5} \)

Solución: factoricemos.

\[
\frac{(x + 2)(x - 2)}{(x + 4)(x + 3)} \times \frac{(x - 5)(x + 3)}{(x + 7)(x - 2)} \times \frac{(x + 4)^2}{(x - 5)(2x + 1)}
\]

Multipliquemos las fracciones para obtener

\[
\frac{(x + 2)(x - 2)(x - 5)(x + 3)(x + 4)^2}{(x + 4)(x + 3)(x + 7)(x - 2)(x - 5)(2x + 1)}
\]

Ahora simplifiquemos

\[
\frac{(x + 2)(x - 2)(x - 5)(x + 3)(x + 4)^2}{(x + 4)(x + 3)(x + 7)(x - 2)(x - 5)(2x + 1)}
\]

\[
\frac{x^2 - 4}{x^2 + 7x + 12} \times \frac{x^2 - 2x - 15}{x^2 + 5x - 14} \times \frac{x^2 + 8x + 16}{2x^2 - 9x - 5} = \frac{(x + 2)(x + 4)}{(x + 7)(2x + 1)}
\]

Realizar la operación \(\frac{2x^2+x-3}{x^2-4} \times \frac{3x^2-10x+8}{2x^2-7x+5} \times \frac{2x^2-x-10}{6x^2+x-12} \)

Solución: factoricemos.

\[
\frac{(2x + 3)(x - 1)}{(x + 2)(x - 2)} \times \frac{(3x - 4)(x - 2)}{(2x - 5)(x - 1)} \times \frac{(2x - 5)(x + 2)}{(2x + 3)(3x - 4)}
\]

Multipliquemos las fracciones para obtener

\[
\frac{(2x + 3)(x - 1)(3x - 4)(x - 2)(2x - 5)(x + 2)}{(x + 2)(x - 2)(2x - 5)(x - 1)(2x + 3)(3x - 4)}
\]

Simplifiquemos

\[
\frac{(2x + 3)(x - 1)(3x - 4)(x - 2)(2x - 5)(x + 2)}{(x + 2)(x - 2)(2x - 5)(x - 1)(2x + 3)(3x - 4)}
\]

Dado que todo se canceló al simplificar, el resultado es
\[
\frac{2x^2 + x - 3}{x^2 - 4} \times \frac{3x^2 - 10x + 8}{2x^2 - 7x + 5} \times \frac{2x^2 - x - 10}{6x^2 + x - 12} = 1
\]

División de fracciones algebraicas: para dividir dos fracciones algebraicas, basta factorizar completamente sus numeradores y denominadores, y posteriormente, hacer el producto **cruzado** recordando que el numerador de la fracción resultante es el producto entre el numerador del dividendo y el denominador del divisor; el denominador del resultado será el otro producto cruzado. Veamos

- Realizar la operación \(\frac{d^2 + 5d + 4}{d^2 + 10d + 21} \div \frac{d^3 + 64}{d^2 - 49} \)

Solución: factoricemos.

\[
\frac{d^2 + 5d + 4}{d^2 + 10d + 21} \div \frac{d^3 + 64}{d^2 - 49} = \frac{(d + 4)(d + 1)}{(d + 7)(d + 3)} \div \frac{(d + 4)(d^2 - 4d + 16)}{(d + 7)(d - 7)}
\]

Ahora efectuemos los productos cruzados

\[
\frac{d^2 + 5d + 4}{d^2 + 10d + 21} \div \frac{d^3 + 64}{d^2 - 49} = \frac{(d + 4)(d + 1)(d + 7)(d - 7)}{(d + 7)(d + 3)(d + 4)(d^2 - 4d + 16)}
\]

Simplifiquemos la fracción resultante

\[
\frac{d^2 + 5d + 4}{d^2 + 10d + 21} \div \frac{d^3 + 64}{d^2 - 49} = \frac{(d + 4)(d + 1)(d + 7)(d - 7)}{(d + 7)(d + 3)(d + 4)(d^2 - 4d + 16)}
\]

Finalmente

\[
\frac{d^2 + 5d + 4}{d^2 + 10d + 21} \div \frac{d^3 + 64}{d^2 - 49} = \frac{(d + 1)(d - 7)}{(d + 3)(d^2 - 4d + 16)}
\]

Nota: otra forma de efectuar las divisiones entre fracciones es invertir el divisor y realizar el producto entre los numeradores y los denominadores. Esto como consecuencia de que la división y la multiplicación sean operaciones inversas.
- Realizar la operación: \[
\frac{8x^2+26x+15}{16x^2-9} \div \frac{6x^2+13x-5}{9x^2-1}
\]

Realicemos ahora las multiplicaciones cruzadas:

\[
\frac{8x^2+26x+15}{16x^2-9} \div \frac{6x^2+13x-5}{9x^2-1} = \frac{(2x+5)(4x+3)(3x+1)(3x-1)}{(4x+3)(4x-3)(2x+5)(3x-1)}
\]

Simplifiquemos:

\[
\frac{8x^2+26x+15}{16x^2-9} \div \frac{6x^2+13x-5}{9x^2-1} = \frac{(3x+1)}{(4x-3)}
\]

- Realizar la operación: \[
\left(\frac{3y^2+4y}{2y^2-11y-40}\right) \times \left(\frac{2y^2+19y+35}{15y^2+14y-8}\right) \div \left(\frac{y^2+8y+7}{35y^2-9y-2}\right) \times \left(\frac{7y^2+y}{y^2-7y-8}\right)
\]

Solución: como en todos los ejercicios de este tipo, factoricemos completamente:

\[
= \left[\frac{y(3y+4)}{(2y+5)(y-8)} \times \frac{(y+7)(2y+5)}{(3y+4)(5y-2)}\right] \div \left[\frac{(y+7)(y+1)}{(5y-2)(7y+1)} \times \frac{y(7y+1)}{(y-8)(y+1)}\right]
\]

Operemos primero las multiplicaciones dentro de los corchetes:

\[
= \left[\frac{y(3y+4)(y+7)(2y+5)}{(2y+5)(y-8)(3y+4)(5y-2)}\right] \div \left[\frac{(y+7)(y+1)y(7y+1)}{(5y-2)(7y+1)(y-8)(y+1)}\right]
\]

Ahora realicemos la división:

\[
= \frac{y(3y+4)(y+7)(2y+5)(5y-2)(7y+1)(y-8)(y+1)}{(2y+5)(y-8)(3y+4)(5y-2)(y+7)(y+1)y(7y+1)}
\]

Simplifiquemos:

\[
= \frac{y(3y+4)(y+7)(2y+5)(5y-2)(7y+1)(y-8)(y+1)}{(2y+5)(y-8)(3y+4)(5y-2)(y+7)(y+1)y(7y+1)}
\]

103
Dado que al simplificar obtuvimos una cancelación de todos los factores el resultado es

\[
\left(\frac{3y^2 + 4y}{2y^2 - 11y - 40} \times \frac{2y^2 + 19y + 35}{15y^2 + 14y - 8} \right) \div \left(\frac{y^2 + 8y + 7}{35y^2 - 9y - 2} \times \frac{7y^2 + y}{y^2 - 7y - 8} \right) = 1
\]

Racionalización de denominadores: el proceso de racionalizar un denominador es, como indica su nombre, aquel que lo convierte en una expresión racional, es decir, sin raíces indicadas. De esta manera, racionalizar una fracción no es más que expresar una fracción equivalente a esta, pero sin raíces en el denominador.

Dependiendo del número de términos y del índice de las raíces, se pueden dar varios casos.

a. El denominador es una raíz cuadrada: en estos casos basta multiplicar al numerador y al denominador de la fracción por la misma raíz. Veamos algunos ejemplos:

- Racionalizar la fracción \(\frac{5}{\sqrt{2}} \)

Solución: en este caso, dado que la raíz en el denominador es cuadrada, multipliquemos numerador y denominador por \(\sqrt{2} \)

\[
\frac{5}{\sqrt{2}} = \frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
\]

Multiplicando las fracciones y recordando las propiedades de las raíces, notemos que

\[
\frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{(\sqrt{2})^2}
\]

\[
\frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2}
\]

Nota: nótese que la fracción \(\frac{\sqrt{2}}{\sqrt{2}} \) es igual a 1. Este hecho justifica el procedimiento, ya que al multiplicar por 1, la fracción se mantiene equivalente.
• Racionalizar la fracción \(\frac{5x + 3y}{\sqrt{6zm^3}} \)

Solución: recurriendo nuevamente al proceso anterior tenemos

\[
\frac{5x + 3y}{\sqrt{6zm^3}} = \frac{5x + 3y}{\sqrt{6zm^3}} \times \frac{\sqrt{6zm^3}}{\sqrt{6zm^3}}
\]

\[
\frac{5x + 3y}{\sqrt{6zm^3}} = \frac{(5x + 3y)\sqrt{6zm^3}}{6zm^3}
\]

b. El denominador es un binomio con raíces cuadradas: cuando se presenta este caso, debemos multiplicar numerador y denominador por el binomio **conjugado** del denominador. Este se define como “un binomio con los mismos términos pero con el signo central contrario”; es decir:

El conjugado del binomio \((a + b)\) es el binomio \((a - b)\). Veamos algunos ejemplos.

• Racionalizar la fracción \(\frac{6}{\sqrt{5} + \sqrt{2}} \)

Solución: vemos que en el denominador hay un binomio con raíces cuadradas. Multipliquemos al numerador y al denominador por el conjugado de este binomio, es decir, por \(\sqrt{5} - \sqrt{2} \)

\[
\frac{6}{\sqrt{5} + \sqrt{2}} = \frac{6}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}
\]

\[
\frac{6}{\sqrt{5} + \sqrt{2}} = \frac{6(\sqrt{5} - \sqrt{2})}{(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})}
\]

Recordemos el segundo producto notable que abordamos en este objeto de aprendizaje: \((a + b)(a - b) = a^2 - b^2\) y asociémoslo con los factores que tenemos en el denominador.

\[
\frac{6}{\sqrt{5} + \sqrt{2}} = \frac{6(\sqrt{5} - \sqrt{2})}{(\sqrt{5})^2 - (\sqrt{2})^2}
\]

\[
\frac{6}{\sqrt{5} + \sqrt{2}} = \frac{6(\sqrt{5} - \sqrt{2})}{5 - 2}
\]
\[
\frac{6}{\sqrt{5} + \sqrt{2}} = \frac{6(\sqrt{5} - \sqrt{2})}{3}
\]

Simplificando esta fracción tenemos que

\[
\frac{6}{\sqrt{5} + \sqrt{2}} = 2(\sqrt{5} - \sqrt{2})
\]

• Racionalizar la fracción \(\frac{x-1}{\sqrt{x}-1}\)

Solución: vemos que en el denominador hay un binomio con raíz cuadrada. Multipliquemos al numerador y al denominador por el conjugado de dicho binomio.

\[
\frac{x - 1}{\sqrt{x} - 1} = \frac{x - 1}{\sqrt{x} - 1} \times \frac{\sqrt{x} + 1}{\sqrt{x} + 1}
\]

Ahora

\[
\frac{x - 1}{\sqrt{x} - 1} = \frac{(x - 1)(\sqrt{x} + 1)}{(\sqrt{x})^2 - (1)^2}
\]

\[
\frac{x - 1}{\sqrt{x} - 1} = \frac{(x - 1)(\sqrt{x} + 1)}{x - 1}
\]

\[
\frac{x - 1}{\sqrt{x} - 1} = \frac{(x - 1)(\sqrt{x} + 1)}{\sqrt{x} - 1}
\]

\[
\frac{x - 1}{\sqrt{x} - 1} = (\sqrt{x} + 1)
\]

c. **Otros casos para índices diferentes de dos:** cualquier monomio irracional se puede racionalizar multiplicando y dividiendo la fracción por un monomio con potencias definidas de modo que se pueda extraer la raíz exacta. Veamos algunos ejemplos

• Racionalizar \(\frac{5x+2}{\sqrt[5]{16x^3y^2z^4}}\)
Solución: como la raíz es de índice 5, debemos multiplicar a la fracción por el monomio que complete los exponentes: a 16 lo multiplicaremos por 2 para obtener 32, a x^3 lo multiplicaremos por x^2; a y^2 lo multiplicaremos por y^3; finalmente a z^4 lo multiplicaremos por z. Veamos

$$
\frac{5x + 2}{\sqrt[5]{16x^3y^2z^4}} = \frac{5x + 2}{\sqrt[5]{16x^3y^2z^4}} \times \frac{\sqrt[5]{2x^2y^3z}}{\sqrt[5]{2x^2y^3z}}
$$

$$
\frac{5x + 2}{\sqrt[5]{16x^3y^2z^4}} = \frac{(5x + 2)^{\frac{1}{5}}2x^2y^3z}{(\sqrt[5]{16x^3y^2z^4})(\sqrt[5]{2x^2y^3z})}
$$

Finalmente

$$
\frac{5x + 2}{\sqrt[5]{16x^3y^2z^4}} = \frac{(5x + 2)^{\frac{1}{5}}2x^2y^3z}{2xyz}
$$

- Racionalizar $\frac{8a + 3}{\sqrt[4]{9d^6f^{13}g^3}}$

Solución: en este caso, vemos que la cuarta potencia más cercana a 9 es 81, de modo que multiplicaremos por $\sqrt[4]{9d^2f^3g}$ para completar además, exponentes divisibles por 4. Veamos

$$
\frac{8a + 3}{\sqrt[4]{9d^6f^{13}g^3}} = \frac{8a + 3}{\sqrt[4]{9d^6f^{13}g^3}} \times \frac{\sqrt[4]{9d^2f^3g}}{\sqrt[4]{9d^2f^3g}}
$$

$$
\frac{8a + 3}{\sqrt[4]{9d^6f^{13}g^3}} = \frac{(8a + 3)^{\frac{1}{4}}9d^2f^3g}{(\sqrt[4]{9d^6f^{13}g^3})(\sqrt[4]{9d^2f^3g})}
$$

$$
\frac{8a + 3}{\sqrt[4]{9d^6f^{13}g^3}} = \frac{(8a + 3)^{\frac{1}{4}}9d^2f^3g}{\sqrt[4]{81d^8f^{16}g^4}}
$$

$$
\frac{8a + 3}{\sqrt[4]{9d^6f^{13}g^3}} = \frac{(8a + 3)^{\frac{1}{4}}9d^2f^3g}{3d^2f^4g}
$$
EJERCICIOS PROPUESTOS:
Resolver cada una de las siguientes operaciones

1. \[\frac{a}{a^2+ab+a+b} + \frac{1}{a^2-b^2} - \frac{b}{a^2-2ab+b^2} \]
2. \[\frac{3}{6x^2-x-2} + \frac{2}{4x^2-1} - \frac{x}{6x^2-7x+2} \]
3. \[\frac{3b+1}{2b^2+11b+15} - \frac{5b-3}{4b^2-25} - \frac{b-2}{2b^2+b-15} \]
4. \[\frac{1}{x^2-9} - \frac{4}{x^2+6x+9} + \frac{3}{x^2-6x+9} \]
5. \[\frac{3z}{z^4-13z^2+36} + \frac{2z}{z^4-16} - \frac{z}{z^4-81} \]
6. \[\frac{a^3}{a^2-a-30} \div \frac{2a^2}{a^2+a-42} \]
7. \[\frac{2b^2-b-21}{b^3-5b^2+3b-15} \div \frac{b^2+b-6}{b^2-25} \]
8. \[\frac{2f^2-7f+3}{2f^3+5f-3} \div \frac{f^2-5f+6}{f^2-f-6} \]
9. \[\frac{x^2-4}{x^3+3x^2+3x+1} \div \frac{x^2+5x+6}{x^3+1} \]
10. \[\frac{c^2+3c+2}{c^2-9} \div \frac{c^2-4}{c^2+5c+6} \]
11. Racionalizar \[\frac{5x-4}{4x - \sqrt[4]{y^3}z} \]
12. Racionalizar \[\frac{h^2}{\sqrt[5]{gh^3}} \]
13. Racionalizar \[\frac{5f}{\sqrt[7]{8f^3u^{11}}} \]
14. Racionalizar \[\frac{4x}{\sqrt[5]{5x+1}} \]
15. Racionalizar \[\frac{5a^2}{\sqrt[5]{9a^3b^{12}(\sqrt[3]{3a-\sqrt{5}x^5})}} \]
16. \[\frac{2a^3+2ab^2}{2ax^2-2ax} \times \frac{x^3-x}{a^2x+b^2x} \times \frac{x}{x+1} \]
17. \[\frac{a^2-5a+6}{a^2+6a+5} \times \frac{5a^2+24a-5}{a^3-2a^2+3a-6} \times \frac{a^3+2a^2+3a+6}{5a^2-21a+4} \]
18. \[\frac{b^2-7b+10}{b^3-3b^2+4b-12} \times \frac{b^2+2b-15}{b^2+6b+8} \times \frac{b^3-4b^2+9b-36}{b^2-25} \]
19. \[\frac{b^3-8}{b^3+1} \times \frac{b^2+3b+2}{b^2+2b+4} \times \frac{b^2-b+1}{b-2} \]
20. \[\frac{2d^2+5d-63}{d^2-2d-15} \times \frac{2d^2-13d+15}{2d^3-9d^2} \times \frac{d^5+3d^4}{2d^2+11d-21} \]
SOLUCIÓN A LOS EJERCICIOS PROPUESTOS:

SECCIÓN 2.2 TEORÍA DE EXPONENTES Y RADICALES

1. \(\frac{n^2 p^{11}}{m^5} \)
2. \(\frac{n^{16}}{m^8 p^6} \)
3. \(\frac{p^{20/3}}{x^2 y^6} \)
4. \(\frac{a^{40/3} b^{5/3}}{c^{55/3}} \)
5. \(\frac{f^{58}}{c^{7/4} d^{235/4}} \)
6. \(\frac{h^{68/5} j^{428/15}}{m^{44/3}} \)
7. \(\frac{1}{g^{3/10} h^{9/20} e^{6/5}} \)
8. \(\frac{p^{1/7} r^{40/7}}{x^{38/7}} \)
9. \(\frac{c^{32} n^{88}}{m^{32} p^{16}} \)
10. \(\frac{a^{4} c^{20/7} d^{3/7}}{b^{16/7}} \)

SECCIÓN 2.3 OPERACIONES ENTRE POLINOMIOS

1. Simplifique las siguientes expresiones algebraicas de modo que no queden signos de agrupación

a. \(-23x - 11y - 7\)
b. \(-183m^2 - 4m + 183mn - 27n^2 - 54\)
c. \(\frac{297}{8}x y^2 + \frac{13}{8} xy + \frac{1}{2} x - \frac{225}{8} y^2\)
d. \(4c^2d + 15c^2 + 4cd^2 + 2cd - 24d^2 + 13d + 4c + 24\)
e. \(x^2 - 6x + 30y^2 + 30yz - 6y + 27z - 18z^2\)

2. Realizar las siguientes sumas y restas de polinomios:

a. \(-7x^4 y^5 - 7x^3 y^6\)
b. \(74\frac{9}{3} x^2 - \frac{8}{3} xy + \frac{7}{15} y^2\)
c. \(-20a^4 - 5a^2 b^2 + ab^3 + 12a^3 b - b^4\)
d. \(-2m^4 - 15mn - 13m^2 + mn^2 + 4\)
e. \(27\frac{3}{4} p^3 - \frac{11}{4} pr^4 - \frac{17}{40} r^2 - \frac{5}{16} p^2 r^2 + \frac{8}{15}\)

3. Efectuar las siguientes multiplicaciones:

a. \(-30x^8 y^{10} + 38x^7 y^{11} - 12x^6 y^{12} - 24x^6 y^8 + 16x^5 y^9\)
b. \(-\frac{24}{5} x^4 + \frac{115}{8} x^3 y - \frac{713}{96} x^2 y^2 - \frac{65}{144} xy^3 + \frac{25}{54} y^4\)
c. \(70x^2y^2 - 20x^4y^2 - 35x^2 + 24x^2y^4 - 8x^4y^4 - 72y^2 + 42\)

d. \(-48x^6 - 162x^5 + 150x^4 + 627x^3 - 99x^2 - 396x + 108\)

e. \(-120p^9 + 610p^8 - 773p^7 + 401p^6 + 588p^5 - 1274p^4 + 386p^3 - 22p^2 - 501p - 135\)

4. Realizar las siguientes divisiones

a. cociente \(x^2 - x + 1\) residuo 0

b. cociente \(2x^2 + 7x - 1\) residuo 0

c. cociente \(5a^2 + 7ab - 13b^2\) residuo 0

d. cociente \(x^2 + 11x + 33\) residuo 103

e. cociente \(2m - 5\) residuo \(3m + 5\)

SECCIÓN 2.4 PRODUCTOS Y COCIENTES NOTABLES

1. \(\frac{25}{9} a^4 + \frac{20}{21} a^2 b^{-3} + \frac{4}{9} b^{-6}\)

2. \(\frac{64 m^8}{25} + \frac{1064 m^4}{1705} - \frac{10}{341}\)

3. \(100 a^4 + \frac{5 a^2 b^3}{2} + \frac{b^6}{16}\)

4. \(\frac{49 b^8}{81} - \frac{4 x^6}{9}\)

5. \(49 k^4 + 7 k^2 - 12\)

6. \(-\frac{125 b^{21}}{729} + \frac{40 b^{14} n^4}{27} - \frac{64 b^7 n^8}{15} + \frac{512 n^{12}}{125}\)

7. \(25 p^6 - \frac{80}{3} p^3 q^{-4} + \frac{64}{9} q^{-8}\)

8. \(-\frac{4 a^4}{9} + b^8 + 10 b^4 + 25\)

9. \(-\frac{216 a^6}{343} + \frac{324 a^4 k^2}{49} - \frac{162 a^2 k^4}{7} + 27 k^6\)

10. \(\frac{b^4}{9} - \frac{8 b^2 c^4}{27} + \frac{64 c^8}{81}\)

11. \(25 m^4 - 20 m^2 - 96\)

12. \(\frac{49 b^{-8}}{81} + \frac{112}{99} c^3 b^{-4} + \frac{64}{121} c^6\)

13. \(8 a^3 + 36 a^2 m - 12 a^2 + 54 a m^2 - 36 a m + 6 a + 27 m^3 - 27 m^2 + 9 m - 1\)

14. \(x^4 - x^3 + 12 x^2 - 10 x + 37\)

15. \(49 x^4 + 84 x^3 + 22 x^2 - 12 x - 64 y^2 + 1\)
16. $25 a^2 - 20 a b + 30 a c + 4 b^2 - 12 b c + 9 c^2$

17. $25 a^2 - 10 a b - 10 a + b^2 + 2 b + 4$

18. $-\frac{8 a^9}{125} - \frac{28 a^6 b}{75} - \frac{98 a^3 b^2}{135} - \frac{343 b^3}{729}$

19. $-36 b^2 + 84 b y^2 + 9 x^4 + 24 x^2 - 49 y^4 + 16$

20. $4 a^4 - 10 a^2 y + 4 a^2 - 24 y^2 - 71 y - 35$

21. $a^3 - 15 a^2 b - 9 a^2 c + 6 a^2 + 75 a b^2 + 90 a b c - 60 a b + 27 a^2 c^2 - 36 a c + 12 a - 125 b^3 - 225 b^2 c + 150 b^2 - 135 b^3 c^2 + 180 b c - 60 b - 27 c^3 + 54 c^2 - 36 c + 8$

22. $49 a^6 - 28 a^3 x^4 + 70 a^3 + 4 x^8 - 20 x^4 + 25$

23. $-15 k^2 - 2 k x^2 - 19 k y + x^4 + 7 x^2 y + 10 y^2$

24. $81 a^4 - 450 a^2 b^2 + 625 b^4$

25. $a^4 + 2 a^3 b + 6 a^2 b^2 + 2 a b^3 + b^4$

SECCIÓN 2.5 FACTORIZACIÓN DE POLINOMIOS

1. $(x - 1)(x + 1)(x^2 + 1)(x^4 + 1)$

2. $(m - 3)(m + 2)(m^2 - 2 m + 4)(m^2 + 3 m + 9)$

3. $(x - 2)^2(x + 2)(x^2 + 4)^2$

4. $(3 b^2 + 10)(4 b^2 - 3)$

5. $(m - 1)(5 x^2 + 13 x + 2)$

6. $x(x + 1)(x^2 - x + 1)$

7. $2(x - 1)(x^2 + x + 1)(5 x^3 + 4)$

8. $-36 m^2 n p (3 m^2 n^2 p^4 - 2 m n - 4 p^3)$

9. $(5 a - 6 b + 2)(25 a^2 - 60 a b - 10 a + 36 b^2 + 12 b + 4)$

10. $3(m^2 - 8 p)(m^2 + 8 p)$

11. $2m(x + 2)(x + 3)$

12. $(m - 2)^2(m^2 + 2 m + 4)^2$

13. $2(3 m^2 + 2 n^3)^3$

14. $4(2 c - 3)(2 c + 3)(6 c^2 - 7)m^2$
\[15. (a - 2 m)(a + 2 m)(a^2 - 2 a m + 4 m^2)(a^2 + 2 a m + 4 m^2) \]

\[16. \frac{5}{4} x (1 - y)(1 + y)(1 - y + y^2)(1 + y + y^2) \]

\[17. (5 m + 2 n - 5)(5 m + 2 n - 2) \quad 18. -8 (3 k + 8)^3 \]

\[19. p \left(\frac{3}{4} a - 1 \right)^2 \]

\[20. (x - 4)(x - 2)(x + 2)(x + 4) \]

\[21. 8(m^2 - 2 p^3)(m^4 + 2 m^2 p^3 + 4 p^6) \]

\[22. (2 m - 3)(3 m - 2) \quad 23. (x^2 + 1)(y - 5)(y + 2) \]

\[24. (5 b - 3 a)(7 a + b) \]

\[25. -7 m(5 m^2 + 4 n)^2 \]

\[26. (a + b - c)(-2 d + e + p) \]

\[27. 5(2 x - 1)(2 x + 1)(8 x^2 + 27) \]

\[28. -2(x - 5)(x + 3) \quad 29. (9a - b)^2 \]

\[30. 18pq(3p^2q^2 + 2pq^2 + 5p - 4q^3) \]

\[31. (x + 1 - y)(x^2 + 2x + 1 + xy + y + y^2) \]

\[32. (d - 2c)(d + 2c)(2m + p) \]

\[33. 11ab^2x(7a^3 + a^2b^2x + 12ab^3x^3 - 11b^2x^2) \]

\[34. b(m - 2)(m^2 + my + y^2) \quad 35. (x - y)^3 \]

\[36. -\frac{1}{216}(89a - 68b)(10891a^2 - 13490ab + 4228b^2) \]

\[37. (4k^2 + 3)(x + 2)(x + 3) \quad 38. 2x(3b + 5c)(c - 2d) \]

\[39. \frac{1}{120}(9p + 10q^2)(9p - 10q^2)\left(\frac{27}{40}p^2 + \frac{5}{6}q^4\right) \]

\[40. 3x^2(m + 2n)^3(m - 2n)^3 \]
SECCIÓN 2.6 FRACCIONES ALGEBRAICAS

1. \[\frac{a^3 - 3a^2b + a^2 - 2a + a - b^2 - b}{(a+1)(a-b)^2(a+b)} \]

2. \[\frac{-2x^2 + 11x - 7}{(2x-1)(2x+1)(3x-2)} \]

3. \[\frac{-b^2 - 26b + 14}{(b+3)(2b-5)(2b+5)} \]

4. \[\frac{6(7x-3)}{(x-3)^2(x+3)^2} \]

5. \[\frac{z(4z^4 + 39z^2 - 38)}{(z-3)(z-2)(z+2)(z+3)(z^2 + 4)(z^2 + 9)} \]

6. \[\frac{a(a+7)}{2(a+5)} \]

7. \[\frac{(b+5)(2b-7)}{(b-2)(b^2+3)} \]

8. 1

9. \[\frac{(x-2)(x^2 - x + 1)}{(x+1)^2(x+3)} \]

10. \[\frac{(c+1)(c+2)}{(c-3)(c-2)} \]

11. \[\frac{(5x-4)(4x + \sqrt{y^3}z)}{16x^2 - y^3z} \]

12. \[\frac{\sqrt{gh}}{g} \]

13. \[\frac{5f^2\sqrt{16f^4u^3}}{2fu^2} \]

14. \[\frac{4x(\sqrt{5x} - 1)}{5x-1} \]

15. \[\frac{5a^5\sqrt{27a^2b^4}(\sqrt{3a} + x^2\sqrt{5x})}{3b^3(3a - 5x^5)} \]

16. 1

17. \[\frac{(a-3)(a+2)}{(a-4)(a+1)} \]

18. \[\frac{(b-4)(b-2)(b^2 + 9)}{(b+2)(b+4)(b^2 + 4)} \]

19. \[b + 2 \]

20. \[d^2 \]
3 ECUACIONES E INECUACIONES

3.1 Definición y clasificación

Definición de Ecuación: podemos definir una ecuación como un enunciado que indica la igualdad entre dos expresiones, de modo que en ellas se encuentren cantidades desconocidas, llamadas comúnmente incógnitas.

Nota: aunque poseen el mismo signo, una equivalencia algebraica (o identidad) es un concepto diferente de una ecuación. Mientras la ecuación es una igualdad válida para uno, algunos o ningún valor real, una identidad es válida para todos los valores posibles de la variable. Por ejemplo, la igualdad 2x+3=5 es válida solo para x=1, mientras que la igualdad (x+y) (x−y)=x^2+y^2 lo es para cualquier valor de x o de y.

Decimos que un valor de la incógnita es “solución” o “raíz” de la ecuación si al sustituir este valor en dicha ecuación obtenemos una igualdad. Por ejemplo, sabemos que \(x = 3\) es solución de la ecuación \(x^2 − x − 6 = 0\) ya que al sustituir vemos que:

\[3^2 − 3 − 6 = 0\]

Clasificación de las ecuaciones: vamos a utilizar varios criterios para clasificar ecuaciones: según el tipo de expresión algebraica que contenga a la incógnita, según el grado (en el caso de las polinomísticas) y según el número de ecuaciones frente al número de incógnitas.

a. Según el tipo de expresión algebraica: bajo este criterio las ecuaciones se pueden clasificar en:

- **Polinómicas**: si la incógnita se encuentra en un polinomio.
- **Racionales**: si la incógnita se encuentra en una expresión racional.
- **Irracionales**: si la incógnita se encuentra en expresiones con raíces indicadas.
- **Exponenciales**: si la incógnita se encuentra en el exponente de una expresión de potencia.
- **Logarítmicas**: en este caso, la incógnita está en un logaritmo.

b. Según el grado de la incógnita: una ecuación polinómica puede clasificarse, según el grado de la incógnita en:

- **Lineal**: el grado de la incógnita es 1. Es de la forma \(ax + b = 0\)
- **Cuadrática**: tiene la forma \(ax^2 + bx + c = 0 \), y podemos reconocer que el máximo exponente en este tipo de ecuaciones es 2.
- **Cúbica**: tiene la forma \(ax^3 + bx^2 + cx + d = 0 \), y podemos reconocer que el máximo exponente en este tipo de ecuaciones es 3.

Una ecuación de cuarto grado en adelante, simplemente se clasifica como “ecuación de grado cuarto”, etc.

c. Según el número de ecuaciones y variables: en este caso podemos hacer la siguiente clasificación:

- **Indeterminada**: expresa una igualdad con más de una variable. Para este tipo de ecuaciones pueden haber infinitas o ninguna solución, por ejemplo \(5x + 4y = -1 \) tiene infinitas soluciones, mientras que la ecuación \(8x^2 + 5y^2 = -1 \) no tiene ninguna. En el primer caso, las soluciones son infinitas ya que, como veremos posteriormente, esta es la representación de una recta, en cuyo caso, cada punto es una solución. En el segundo caso, vemos que las dos incógnitas del lado izquierdo del igual son cuadrados (siempre positivos), por lo cual es imposible que su suma sea un número negativo.
- **Simultáneas**: si se forma un sistema de ecuaciones con más de una variable, en la que el número de ecuaciones es menor o igual que el número de incógnitas, decimos que se ha formado un sistema \(n \times m \) donde \(n \) es el número de ecuaciones y \(m \) es el número de incógnitas, por ejemplo:

\[
\begin{align*}
2x + y &= -1 \\
3x + 5y &= 7
\end{align*}
\]

es un sistema de ecuaciones lineales \(2 \times 2 \).

Generalidades sobre la solución de ecuaciones: las siguientes son algunas recomendaciones y/o propiedades que servirán para encontrar el valor de la(s) incógnita(s). Sugerimos recurrir constantemente a estas generalidades de modo que se pueda dar una apropiación adecuada de la estructura de las ecuaciones.

1. El objetivo en toda ecuación es encontrar el valor o valores posibles de la incógnita, de modo que se satisfaga la igualdad planteada. Al momento de encontrar el o los valores, sugerimos siempre evaluar este o estos valores en la ecuación, de modo que se pueda verificar la validez del resultado.

Nota: esta indicación se convierte a largo plazo en un importante hábito para quien resuelve las ecuaciones, dado que, aunque se encuentren varias soluciones a una ecuación, no todas son válidas en un contexto determinado. A estas soluciones se les conoce como soluciones extrañas.
2. Propiedad uniforme y transposición de términos: para despejar una incógnita a veces es necesario “pasar al otro lado del igual” los números conocidos. Ante esta necesidad, enunciamos un proceso denominado transposición de términos el cual indica que si un número está sumando o restando a un lado del igual, pasará a restar o a sumar respectivamente al otro lado además, si un número está multiplicando o dividiendo a un lado del igual, pasará a dividir o a multiplicar respectivamente con el mismo signo que tenía antes de pasar de lado.

Estos dos procesos son consecuencia de una propiedad de los números reales llamada propiedad uniforme, la cual, en términos formales indica que:

\[
\begin{align*}
\text{si } a = b \text{ entonces } & a + c = b + c \\
& a - c = b - c \\
& a \times c = b \times c \quad c \neq 0
\end{align*}
\]

3. Jerarquía al momento de despejar: si deseamos despejar una incógnita en una ecuación en la que ella se encuentra simultáneamente multiplicada o dividida y sumada o restada a un número, primero transponemos las sumas o restas y luego las multiplicaciones o divisiones. Por ejemplo, si queremos despejar la \(k \) de la ecuación \(5k + 6 = 21 \) el orden es el siguiente:

\[
5k + 6 = 21 \quad \text{Ecuación dada}
\]

\[
5k = 21 - 6 \quad \text{Primero despejamos el 6 que estaba sumando}
\]

\[
5k = 15 \quad \text{Realizamos la operación correspondiente}
\]

\[
k = \frac{15}{5} \quad \text{El 5 que estaba multiplicando a la } k \text{ ha pasado al otro lado del igual a dividir con el signo positivo que tenía.}
\]

\[
k = 3 \quad \text{Finalmente realizamos la división o la simplificación de la fracción.}
\]

Veamos que un orden incorrecto nos ofrecería otro resultado:

\[
5k + 6 = 21 \quad \text{Ecuación dada}
\]

\[
k + 6 = \frac{21}{5}
\]

\[
k + 6 = 4.2
\]

\[
k = 4.2 - 6
\]

\[
k = -1.8
\]
4. **Producto igualado a cero:** en algunos casos encontraremos productos igualados a cero. En este caso, igualaremos cada factor a cero y despejaremos la incógnita respectiva. Por ejemplo, si tenemos el producto $(x + 2)(x + 3) = 0$, tomaremos cada factor y despejaremos la x luego de igualar a cero. Veamos:

$$(x + 2)(x + 3) = 0$$

$x + 2 = 0$
$x + 3 = 0$

$x = -2$
$x = -3$

Lo anterior indica que las dos soluciones para la ecuación son $x = -2$ y también $x = -3$.

Lo anterior es consecuencia de un importante teorema denominado **teorema fundamental del álgebra** el cual indica en pocas palabras que: “Si el producto de dos o más factores es cero, entonces al menos uno de los factores debe ser cero”. Formalmente diríamos que si $a \times b = 0$ entonces $a = 0$ ó $b = 0$.

5. **Operaciones inversas:** si debemos sacar una incógnita de una raíz de índice n, podemos elevar ambos lados de la igualdad a la n sin alterar la igualdad. Análogamente, si lo que queremos es eliminar un exponente, podemos extraer la raíz n-ésima a ambos lados. Por ejemplo,

Si $(x + 3)^2 = 25$ entonces $\sqrt{(x + 3)^2} = \sqrt{25}$ y al eliminar las operaciones inversas tenemos que $x + 3 = 5$.

Lo anterior también aplica para eliminar logaritmos, identificando la operación inversa antes.

3.2 Ecuaciones lineales o de primer grado

Como mencionamos anteriormente, una ecuación lineal en su forma estándar tiene la estructura $ax + b = 0$ donde a y b son valores conocidos (no necesariamente numéricos, como veremos más adelante). Solucionar este tipo de ecuaciones requiere la aplicación de los siguientes pasos:

1. Identificada la incógnita, eliminamos los signos de agrupación si los hay.
2. Ubicamos a un lado del igual todos los términos que contengan a la incógnita y al otro lado las cantidades conocidas.
3. Operamos los términos semejantes a cada lado del igual y despejamos finalmente la incógnita.

Veamos algunos ejemplos:

- Solucionar la ecuación $5x + 17 = 8(3x - 5)$

Solución: eliminemos en primer lugar al paréntesis que se encuentra al lado derecho

$$5x + 17 = 24x - 40$$

Ahora pasemos las x para un lado del igual y los números para el otro, recordemos que al ser sumados o restados, al otro lado pasan con la operación contraria (transposición de términos)

$$5x - 24x = -40 - 17$$

Sumemos términos semejantes a cada lado del igual

$$-19x = -57$$

Ahora despejemos a la incógnita pasando el número que la está multiplicando, a dividir al otro lado (recordemos que pasa con su propio signo)

$$x = \frac{-57}{-19}$$

Finalmente simplifiquemos para obtener

$$x = 3$$

Solo en este caso, sustituiremos el valor encontrado en la incógnita para verificar la igualdad. En los ejemplos y ejercicios siguientes, se sugiere hacer dicha sustitución para detectar soluciones extrañas.

$$5(3) + 17 = 8(3(3) - 5)$$
$$15 + 17 = 8(9 - 5)$$
$$15 + 17 = 8(4)$$
$$32 = 32$$
Solucionar la ecuación $5x(x - 2) + 4 = 3x^2 + 2x(x + 5) - 10$

Solución: eliminemos en primer lugar los paréntesis

$$5x^2 - 10x + 4 = 3x^2 + 2x^2 + 10x - 10$$

Ahora

$$5x^2 - 10x - 3x^2 - 2x^2 - 10x = -10 - 4$$

$$-20x = -14$$

Hemos eliminado los x^2 ya que sus coeficientes sumaban cero.

$$x = \frac{-14}{-20} = \frac{7}{10}$$

- Resolvamos $8m + [5m - 3(2m - 1) + 7] = 5 - [3(6m - 8) - (7m + 3)]$

Solución: eliminemos en primer lugar los signos de agrupación

$$8m + [5m - 6m + 3 + 7] = 5 - [18m - 24 - 7m - 3]$$

$$8m + 5m - 6m + 3 + 7 = 5 - 18m + 24 + 7m + 3$$

Transpongamos los términos ahora

$$8m + 5m - 6m + 18m - 7m = 5 + 24 + 3 - 3 - 7$$

$$18m = 22$$

$$m = \frac{22}{18}$$

119
\[m = \frac{11}{9} \]

Ecuaciones literales: aunque se pueda identificar siempre cual es la incógnita de la ecuación, no siempre los valores conocidos son numéricos, es decir, pueden ser constantes representadas también con letras. A este tipo de ecuaciones se les conoce como **ecuaciones literales**, las cuales pueden ser de primero, segundo, tercer grado, racionales, exponenciales, logarítmicas, etc.; es decir, sin importar el tipo de ecuación, se puede encontrar el valor de la incógnita, aunque los valores conocidos sean constantes. Veamos algunos ejemplos:

- **Encontrar el valor de la \(x \) en la ecuación** \(2V + 3t = (5x - 3p)^2 \)**

Solución: si nuestra meta es despejar a la \(x \), lo primero que haremos será deshacernos del exponente del paréntesis. Para ellos extraeremos la raíz cuadrada a ambos lados de la igualdad (consecuencia también de la propiedad uniforme)

\[
\sqrt{2V + 3t} = \sqrt{(5x - 3p)^2}
\]

\[
\sqrt{2V + 3t} = 5x - 3p
\]

\[
\sqrt{2V + 3t} + 3p = 5x
\]

Finalmente

\[
\frac{\sqrt{2V + 3t} + 3p}{5} = x
\]

- **Encontrar el valor de la \(t \) en la ecuación** \(\frac{3m+t}{k} = \frac{2at-b}{4n} \)**

Solución: Realicemos en primer lugar el producto cruzado para que no queden denominadores

\[
(3m + t)(4n) = k(2at - b)
\]

Ahora

\[
12mn + 4tn = 2kat - bk
\]

Ubiquemos los términos que contengan a la incógnita a un lado del igual.
Extraigamos factor común \(t \)

\[
t(4n – 2ka) = – bk – 12mn
\]

Despejando finalmente

\[
t = \frac{– bk – 12mn}{4n – 2ka}
\]

EJERCICIOS PROPUESTOS:

Resolver cada una de las siguientes ecuaciones

1. \(5x + 3[8x – 4(5x – 12) + 7(–3x + 4)] = 2x – 4[–8(x + 2) + 3(2x – 1)] \)
2. \(4m + 2[5m + 1 – 3(4m – 12)] = m^2 + 3(m – 4) – m(m – 5) + 7 \)
3. \(n + 3 – 4[(5n + 6) + (n + 3)(n + 2)] = – 4n^2 + 3n – 4[5n + 4(n – 7)] \)
4. \(\frac{1}{2} + 3x – \frac{4}{13}(x + \frac{26}{8}) = \frac{x}{3} + 5\left(\frac{2x}{15} – 3\right) – \frac{2}{9}(x + 3) \)
5. \(5b^2 + 8b – 5 + 7(b – 1) = 5b(b + 3) – 8(b + 1) – 3[4 + 3(2b – 1)] \)

Despejar la variable indicada en cada expresión

1. Despejar \(x \) de \(2\nu x + 3t = 5tx – 4v \)
2. Despejar \(c \) de \(\frac{2V^2}{5t+7} = \frac{4c-9}{8c-7t} \)
3. Despejar \(m \) de \(\frac{5m+3}{2m+1} = \frac{5t+4}{2d+x} \)
4. Despejar \(s \) de \((2s – 1)(s + 3) = 2s^2 + 3(ts – 4) \)
5. Despejar \(d \) de \((4d + 7)^2 = \frac{5p+2}{k-3} \)

3.3 Ecuaciones Cuadráticas o de segundo grado

Definición de Ecuación Cuadrática: como mencionamos en la clasificación expuesta arriba, una ecuación de segundo grado con una incógnita tiene la forma estándar \(ax^2 + bx + c = 0 \) con \(a \neq 0 \) (ya que de ser \(a = 0 \) la ecuación se volvería lineal). Para encontrar el valor de la incógnita en este tipo de variables, enunciaremos algunas recomendaciones.
1. Luego de eliminar los signos de agrupación debemos analizar cuál es la mayor potencia de la incógnita. Si esta potencia es 2 (o par según el caso), pasaremos todos los términos a un lado del igual identificando el signo con el que son transpuestos (esto para que la ecuación quede en su forma estándar igualada a cero).

2. Luego de igualar a cero, identificamos si la ecuación tiene alguna de las formas incompletas o la forma completa, para proceder a encontrar el valor de la incógnita. En cualquier caso, lo primero que debemos intentar es factorizar el polinomio encontrado y, hallados los factores, igualamos cada uno de ellos a cero para despejar finalmente la incógnita.

Formas incompletas de la ecuación cuadrática: si alguna de las constantes b o c o ambas de una ecuación cuadrática son iguales a cero, diremos que la ecuación es *incompleta*. Enunciaremos los tres tipos de ecuaciones incompletas junto con sus soluciones.

a. **Ecuación de la forma $ax^2 = 0$:** en este caso, tenemos solo un coeficiente diferente de cero. La solución para este tipo de ecuaciones es siempre $x = 0$. Veamos algunos ejemplos:

- Resolver la ecuación $5x^2 = 0$

Solución: vemos que esta ecuación tiene la primera forma incompleta, de modo que la solución es $x = 0$

- Resolver la ecuación $4m^2 + 3m - 6 = m^2 + 3(m - 2)$

Solución: eliminemos los signos de agrupación obtenemos

$$4m^2 + 3m - 6 = m^2 + 3m - 6$$

Vemos que la mayor potencia es 2. Pasemos todos los términos a un lado del igual.

$$4m^2 + 3m - 6 - m^2 - 3m + 6 = 0$$

Simplifiquemos los términos semejantes

$$3m^2 = 0$$

Como esta ecuación tiene la primera forma incompleta, diremos que $m = 0$
b. **Ecuación de la forma** $ax^2 + bx = 0$: en este tipo de ecuación el término independiente c es igual a cero. Procederemos a encontrar los valores de x que satisfacen la ecuación.

\[
ax^2 + bx = 0 \quad \text{Ecuación inicial}
\]

\[
x(ax + b) = 0 \quad \text{Extrayendo factor común } x
\]

Ahora, utilizaremos la propiedad consecuencia del teorema fundamental del álgebra; es decir, si el producto de dos expresiones es igual a cero, una de las dos es igual a cero.

\[
\text{Si } x(ax + b) = 0 \quad \text{entonces } x = 0 \text{ ó } ax + b = 0
\]

En la primera igualdad ya se estableció que $x = 0$, mientras que en la segunda tenemos que

\[
ax + b = 0
\]

\[
x = -\frac{b}{a}
\]

De modo que las dos soluciones para esta ecuación son finalmente $x = 0$ y $x = -\frac{b}{a}$. Veamos algunos ejemplos:

- **Solucionar la ecuación** $5x^2 - 20x = 0$

Solución: notemos que la ecuación cuadrática aquí planteada es incompleta de la forma $ax^2 + bx = 0$. Identifiquemos los valores de a y b de modo que podamos aplicar las fórmulas arriba establecidas.

$a = 5$ Ya que es el término que acompaña a la incógnita al cuadrado.

$b = -20$ Que corresponde a la constante que acompaña a la x.

Utilicemos las fórmulas para obtener los valores de x.

\[
x = 0 \quad \text{Primera solución}
\]

\[
x = -\frac{b}{a} \quad \Rightarrow \quad x = -\frac{(-20)}{5}
\]

\[
x = \frac{20}{5}
\]

123
\[x = 4 \] Segunda solución

- Resolver la ecuación \[2[4p(p + 5) - 3] = 4p^2 + 2(p - 3) \]

Solución: eliminemos en primer lugar los signos de agrupación

\[
2[4p^2 + 20p - 3] = 4p^2 + 2p - 6
\]

\[
8p^2 + 40p - 6 = 4p^2 + 2p - 6
\]

Ahora, como hemos encontrado una incógnita al cuadrado, vamos a ubicar todos los términos a un lado del igual.

\[
8p^2 + 40p - 6 - 4p^2 - 2p + 6 = 0
\]

Simplificando términos semejantes tenemos

\[
4p^2 + 38p = 0
\]

Hemos encontrado una ecuación cuadrática incompleta de la forma \(ax^2 + bx = 0 \) por tanto los valores de \(p \) son:

\[
p = 0 \] Primera solución

\[
p = \frac{-b}{a} \implies p = \frac{-38}{4}
\]

\[
p = -9.5 \] Segunda solución

c. **Ecuación de la forma** \(ax^2 + c = 0 \): vamos a utilizar un razonamiento algebraico análogo al anterior para encontrar los valores de \(x \).

\[
ax^2 + c = 0 \] Ecuación inicial

\[
x^2 = \frac{-c}{a} \] Despejando a la incógnita. Extraigamos la raíz cuadrada a ambos lados del igual
\[x = \pm \sqrt{-\frac{c}{a}} \] El símbolo \(\pm \) indica que las dos soluciones solo difieren en el signo.

Dado que el valor de \(x \) depende de una raíz cuadrada, no todo cociente \(\frac{-c}{a} \) genera soluciones reales, de modo que una ecuación cuadrática de esta forma solo tiene solución (real) si \(\frac{-c}{a} \) es positivo. Veamos algunos ejemplos:

- Resolver la ecuación \(7x^2 - 343 = 0 \)

Solución: identificando los elementos de la ecuación, notamos que es de la forma cuadrática incompleta \(ax^2 + c = 0 \). De modo que las soluciones vienen dadas por las expresiones

\[x = \pm \sqrt{-\frac{c}{a}} \iff x = \pm \sqrt{-\frac{-343}{7}} \]

De modo que

\[x = \pm \sqrt{49} \]
\[x = \pm 7 \]

Finalmente las soluciones de la ecuación son \(x = 7 \) y \(x = -7 \)

- Resolver la ecuación \(5x^2 + 180 = 0 \)

Solución: apliquemos las fórmulas anteriores en esta ecuación para obtener.

\[x = \pm \sqrt{-\frac{c}{a}} \iff x = \pm \sqrt{-\frac{-180}{5}} \]

Por tanto

\[x = \pm \sqrt{-36} \]

Como nuestro interés se centra en soluciones que pertenezcan al conjunto de los números reales, diremos que esta ecuación no tiene solución (real).

Nota: es claro que, siendo rigurosos, la ecuación cuadrática anterior sí tiene solución, aunque no sea perteneciente a los números reales. Dichas soluciones pertenecen al conjunto de los números imaginarios.
- Resolver $4h(h - 1) + 3(h + 3) = 3(h^2 - 4h + 1) + 11(h + 2)$

Solución: eliminemos en primer lugar los signos de agrupación.

$$4h^2 - 4h + 3h + 9 = 3h^2 - 12h + 3 + 11h + 22$$

Ubicemos todos los términos a un solo lado del igual y reduzcamos términos semejantes

$$4h^2 - 4h + 3h + 9 - 3h^2 + 12h - 3 - 11h - 22 = 0$$

$$h^2 - 16 = 0$$

En este punto podemos resolver la ecuación de dos maneras diferentes: la primera es intentando factorizar e igualar cada factor encontrado a cero. Veamos

$h^2 - 16 = 0$ Ecuación dada.

$(h + 4)(h - 4) = 0$ Diferencia de cuadrados perfectos

$$(h + 4) = 0 \quad \text{ó} \quad (h - 4) = 0$$

De modo que $h = -4 \quad \text{ó} \quad h = 4$ Son las dos soluciones pedidas

La segunda forma es analizando e identificando el tipo de ecuación incompleta. En este caso, tenemos una ecuación de la forma $ax^2 + c = 0$, de modo que

$$h = \pm\sqrt{-c \over a} \quad \Rightarrow \quad h = \pm\sqrt{-(-16) \over 1}$$

$$h = \pm\sqrt{16}$$

$$h = \pm4$$

Hemos encontrado las dos mismas soluciones que con el método anterior.

Forma Completa de la Ecuación Cuadrática: si los coeficientes a, b y c son diferentes de cero, diremos que la ecuación cuadrática es *completa*. Para resolver este tipo de ecuaciones tenemos los mismos métodos que enunciados arriba: intentar factorizar e igualar los factores encontrados a cero; o aplicando la fórmula que indicaremos a continuación, llamada también *fórmula general*, *fórmula cuadrática* o *fórmula del estudiante*. Esta fórmula indica que, para encontrar las
raíces de una ecuación cuadrática, basta reemplazar los valores de a, b y c en la siguiente expresión.²

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Discriminante de la ecuación cuadrática: antes de comenzar a resolver las ecuaciones, destacaremos una parte de la fórmula cuadrática de suma importancia para reconocer la naturaleza de las raíces, llamada *discriminante*. Este discriminante es la expresión \(b^2 - 4ac \) que se encuentra al interior de la raíz cuadrada. Enunciaremos brevemente las características de las soluciones de la ecuación cuadrática a la luz del discriminante:

Si \(b^2 - 4ac > 0 \) la ecuación tiene dos soluciones reales y diferentes.
Si \(b^2 - 4ac = 0 \) la ecuación tiene una solución real.
Si \(b^2 - 4ac < 0 \) la ecuación *no* tiene soluciones reales.

Dado lo anterior, el lector puede antes de comenzar a resolver una ecuación cuadrática completa, verificar el valor del discriminante para saber si va a obtener o no soluciones para la ecuación. De hecho, podemos profundizar diciendo lo siguiente:

Si \(b^2 - 4ac \) es un número con raíz cuadrada exacta, la ecuación es factorizable como trinomio de la forma \(x^2 + bx + c \) o de la forma \(ax^2 + bx + c \)

Si \(b^2 - 4ac = 0 \), la ecuación es factorizable como trinomio cuadrado perfecto.

En los siguientes ejemplos resolveremos ecuaciones cuadráticas completas, recordando que el primer recurso que debemos descartar es la factorización del trinomio (según sea el caso).

- **Resolver la ecuación** \(x^2 + 5x + 6 = 0 \)

Solución: vamos a solucionar esta ecuación por los dos métodos que indicamos arriba.

1° forma: reconozcamos los valores de las constantes a, b y c:

² La demostración del hallazgo de la fórmula cuadrática no está al alcance de esta cartilla. Para profundizar en dicha demostración, recomendamos textos de precálculo o álgebra intermedia.
\[a = 1 \quad b = 5 \quad c = 6 \]

El valor del discriminante es

\[b^2 - 4ac = 5^2 - 4(1)(6) \]
\[b^2 - 4ac = 25 - 24 \]
\[b^2 - 4ac = 1 \]

En este caso, sabiendo que el discriminante es un número con raíz cuadrada exacta, podemos factorizar como trinomio de la forma \(x^2 + bx + c \). Veamos

\[x^2 + 5x + 6 = 0 \] Ecuación dada

\[(x + 3)(x + 2) = 0 \] Factorizando

\[(x + 3) = 0 \quad \text{ó} \quad (x + 2) = 0 \] Igualando cada factor a cero.

\[x = -3 \quad \text{ó} \quad x = -2 \] Son las raíces de la ecuación.

2° forma: apliquemos directamente la fórmula cuadrática.

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Como ya sabemos que \(b^2 - 4ac = 1 \), basta reemplazar este valor en la fórmula donde corresponde. Veamos

\[x = \frac{-5 \pm \sqrt{1}}{2(1)} \]

Ahora

\[x = \frac{-5 \pm 1}{2} \]

De esta última expresión salen dos soluciones: una con signo + y otra con signo -.

\[x = \frac{-5 + 1}{2} \]
\[x = \frac{-4}{2} \]
Primera Solución

\[x = \frac{-5 - 1}{2} \]

\[x = \frac{-6}{2} \]

Segunda Solución

- Resolver la ecuación \(2x^2 - 7x + 5 = 0 \)

Solución: apliquemos directamente la fórmula cuadrática (en este caso omitiremos factorizar primero, pero la idea es que siempre se intente por este medio).

\[a = 2 \quad b = -7 \quad c = 5 \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

De modo que

\[x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(2)(5)}}{2(2)} \]

Realizando las operaciones indicadas tenemos

\[x = \frac{7 \pm \sqrt{49 - 40}}{4} \]

\[x = \frac{7 \pm \sqrt{9}}{4} \]

\[x = \frac{7 \pm 3}{4} \]

Las dos soluciones son:

\[x = \frac{7 + 3}{4} = \frac{10}{4} = \frac{5}{2} = 2.5 \]
$$x = \frac{7 - 3}{4} = \frac{4}{4} = 1$$

Finalmente $x = 1$ ó $x = \frac{5}{2}$

- Resolver la ecuación $3m^2 + 2m + 4 = 0$

Solución: apliquemos la fórmula cuadrática sabiendo que $a = 3$ $b = 2$ $c = 4$

$$m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$m = \frac{-2 \pm \sqrt{2^2 - 4(3)(4)}}{2(3)}$$

$$m = \frac{-2 \pm \sqrt{4 - 48}}{6}$$

$$m = \frac{-2 \pm \sqrt{-44}}{6}$$

Vemos que $-44<0$ lo cual indica que la ecuación **no** tiene soluciones reales.

- Resolver $5n(n + 3) - 4(n^2 + 7n) + 8 = 2(3n + 5) - 3(n^2 + 1)$

Solución: eliminemos signos de agrupación

$$5n^2 + 15n - 4n^2 - 28n + 8 = 6n + 10 - 3n^2 - 3$$

Ahora

$$5n^2 + 15n - 4n^2 - 28n + 8 - 6n - 10 + 3n^2 + 3 = 0$$

$$4n^2 - 19n + 1 = 0$$

Identifiquemos los valores de las constantes a, b y c.

$$a = 4 \quad b = -19 \quad c = 1$$

$$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
\[n = \frac{-(-19) \pm \sqrt{(-19)^2 - 4(4)(1)}}{2(4)} \]

\[n = \frac{19 \pm \sqrt{361 - 16}}{8} \]

\[n = \frac{19 \pm \sqrt{345}}{8} \]

Las soluciones (aproximando a dos cifras decimales) son

\[n = \frac{19 + \sqrt{345}}{8} = \frac{19 + 18.57}{8} = \frac{37.57}{8} = 4.69 \]

\[n = \frac{19 - \sqrt{345}}{8} = \frac{19 - 18.57}{8} = \frac{0.43}{8} = 0.05 \]

Ecuaciones bicuadráticas: este tipo de ecuación tiene la forma estándar

\[ax^{2n} + bx^n + c = 0 \]

donde \(a \neq 0 \). Esta, como vemos, es una forma extendida de una ecuación de segundo grado, con la condición de que en este trinomio, el segundo término tiene como grado, la mitad del exponente del primer término. La solución de este tipo de ecuaciones se puede encontrar también factorizando (si es posible) o siempre por medio de la fórmula cuadrática, haciendo convenientemente la transformación de la incógnita. Veamos algunos ejemplos:

- Resolver la ecuación \(x^4 - 13x^2 + 36 = 0 \)

Solución: dado que la máxima potencia es 4 y la siguiente es 2 (su mitad) podemos decir que esta es una ecuación bicuadrática. Para encontrar los valores de \(x \), hagamos que \(x^2 = u \) de modo que la ecuación se transforme en \(u^2 - 13u + 36 = 0 \) y podamos aplicar la fórmula general. Veamos

\[u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
\[u = \frac{-(13) \pm \sqrt{(-13)^2 - 4(1)(36)}}{2(1)} \]
\[u = \frac{13 \pm \sqrt{169 - 144}}{2} \]
\[u = \frac{13 \pm \sqrt{25}}{2} \]
\[u = \frac{13 \pm 5}{2} \]

Ahora
\[u = \frac{13 + 5}{2} = \frac{18}{2} = 9 \]
\[u = \frac{13 - 5}{2} = \frac{8}{2} = 4 \]

Finalmente, como \(x^2 = u \) diremos que
\[x^2 = 9 \quad \text{ó} \quad x^2 = 4 \]

De modo que
\[x = 3 \quad \text{ó} \quad x = -3 \quad \text{ó} \quad x = 2 \quad \text{ó} \quad x = -2 \]

Recordemos que pudimos factorizar primero para obtener sin la fórmula cuadrática
\((x + 3)(x - 3)(x + 2)(x - 2) = 0 \). Igualando cada paréntesis a cero, obtendríamos
las soluciones de arriba.

EJERCICIOS PROPUESTOS:

Resolver las siguientes ecuaciones cuadráticas

1. \(n^2 + 7(n - 2) + 15 = 3n(n + 2) + n \)
2. \(5(d^2 + 3d) - 7(d - 1) = 4(2d + 3) - 5 \)
3. \(5x^2 + 8(x - 1) + 7 = 3x^2 + 7x(x - 4) - 1 \)
4. \(b^2 + b(b + 3) - 4 = 3\left(b - \frac{4}{3}\right) \)
5. \(8m(m - 1) + 7(m^2 + m) = 10(m^2 - 2m) + 4m(m - 2) \)
6. \(3m^2 + 6m - 2 = 2(m^2 + 3m) + 8 \)
7. \(4p^2 - 6p + 2 = 3(p^2 - 2p) + 2 \)
8. \(7a(a - 5) + 10(a^2 - 1) = 5(3a^2 - 2) + 4(a^2 + 9) \)
9. \(d^2 + 5(d + 7) = 2d(d + 3) - d\)
10. \(3m(m - 4) + 5(m^2 + 2) = 10 - 4(m^2 - 6m) + 2m(m + 2)\)
11. \(5a^2 + 3(a^2 - 6a) = 9(-2a + 10)\)
12. \(5x^2 + 7(x - 1) = 3(x^2 + 2x) + (x - 7)\)
13. \(8y(y - 5) + 7(2y - 1) = 5y^2 - 6y(y - 4)\)
14. \(g(g - 5) + 6 = 2g^2 - 7(3g - 5)\)
15. \(5j(3j - 5) - 8(j^2 - 4j) = \frac{4}{3}(6j - 12) + 5j(2j - 1)\)
16. \(r(2r - 10) + 5(r^2 + 6r) = 6r(r - 8) + 5\)
17. \(5p^2(3p^2 - 5) + 7p^4 = 2p(5p^3 - 6p) + 7\)
18. \(t(5t^3 - 4t) + 8 = 2t^2(3t^2 - 5) - 5\)
19. \((h^2 + 7)(h^2 - 1) = (3h^2 - 5)(2h^2 + 5)\)
20. \(5(u^2 - 4)(3u^2 - 7) = 2(3u^2 - 5)(3 - 4u^2)\)

3.4 Ecuaciones con Expresiones Racionales

Definición de Ecuación con Expresiones Racionales: las ecuaciones con expresiones racionales son aquellas que contienen fracciones algebraicas al interior de los términos que indican la igualdad. Un ejemplo de este tipo de ecuación es \(\frac{x+1}{x-2} + \frac{3}{x+7} = \frac{4}{x-5}\)

Recomendaciones para la solución de ecuaciones con expresiones racionales: para solucionar una ecuación con expresiones racionales recomendamos los siguientes pasos.

1. **Eliminar los denominadores,** para ellos buscamos el mínimo común múltiplo (como lo hicimos en el segundo objeto de aprendizaje) de los denominadores de *todas* las fracciones algebraicas. Posteriormente multiplicamos este mcm por *todos* los términos de la ecuación.
2. **Resolvemos la ecuación resultante,** para ello analizamos el tipo de ecuación, ya sea lineal o cuadrática.
3. **Verificamos los valores encontrados y las restricciones,** ya que algunos valores encontrados anularían a los denominadores que tenían las fracciones al comienzo del ejercicio.

Los siguientes ejemplos ilustrarán el procedimiento indicado arriba.

- Resolver la ecuación \(\frac{x+5}{x^2-16} + \frac{x-3}{x^2+6x+8} = \frac{2}{x-4}\)
Solución: Vamos a factorizar en primer lugar los numeradores y denominadores (si es posible) para hallar luego el mcm de los denominadores.

\[
\frac{x + 5}{(x + 4)(x - 4)} + \frac{x - 3}{(x + 4)(x + 2)} = \frac{2}{x - 4}
\]

El mcm de los denominadores es \((x + 4)(x - 4)(x + 2)\) (recordemos que se eligen los factores repetidos y no repetidos con mayor exponente). Ahora multipliquemos **todos** los términos de la ecuación por este mcm para simplificar los denominadores. Veamos

\[
(x + 4)(x - 4)(x + 2) \cdot \frac{x + 5}{(x + 4)(x - 4)} + (x + 4)(x - 4)(x + 2) \cdot \frac{x - 3}{(x + 4)(x + 2)} = (x + 4)(x - 4)(x + 2) \cdot \frac{2}{x - 4}
\]

Simplifiquemos

\[
(x + 2)(x + 5) + (x - 4)(x - 3) = 2(x + 4)(x + 2)
\]

Multipliquemos los polinomios obtenidos

\[
x^2 + 7x + 10 + x^2 - 7x + 12 = 2x^2 + 12x + 16
\]

Simplifiquemos los términos

\[
x^2 + 7x + 10 + x^2 - 7x + 12 = 2x^2 + 12x + 16
\]

\[
22 = 12x + 16
\]

\[
6 = 12x
\]

\[
x = \frac{6}{12} = \frac{1}{2}
\]

Nota: si sustituimos el valor encontrado en la ecuación obtendremos una identidad. Nótese que los números que anulaban los denominadores eran -4, -2 y 4; por tanto, si hubiésemos obtenido uno de estos valores como solución, al sustituir resultaría una división entre 0, lo cual no tiene sentido.
• Resolver la ecuación \(\frac{2}{x^2-9} - \frac{3}{x^2+6x+9} = \frac{1}{x^2+x-6} \)

Solución: Vamos nuevamente a factorizar en primer lugar los numeradores y denominadores (si es posible).

\[
\frac{2}{(x+3)(x-3)} - \frac{3}{(x+3)^2} = \frac{1}{(x+3)(x-2)}
\]

El mcm de los denominadores es \((x+3)^2(x-3)(x-2)\). Este será el factor por el que multiplicaremos todos los términos de la ecuación.

\[
(x+3)^2(x-3)(x-2) \cdot \frac{2}{(x+3)(x-3)} - (x+3)^2(x-3)(x-2) \cdot \frac{3}{(x+3)^2} = (x+3)^2(x-3)(x-2) \cdot \frac{1}{(x+3)(x-2)}
\]

Simplificando tenemos que

\[
2(x+3)(x-2) - 3(x-3)(x-2) = (x+3)(x-3)
\]

Multipliquemos

\[
2x^2 + 2x - 12 - 3x^2 + 15x - 18 = x^2 - 9
\]

Simplifiquemos términos semejantes para obtener

\[
-2x^2 + 17x - 21 = 0
\]

Tenemos ahora una ecuación cuadrática con \(a = -2, \ b = 17, \ c = -21 \). Aplicando la fórmula cuadrática tendremos

\[
x = \frac{-17 \pm \sqrt{(17)^2 - 4(-2)(-21)}}{2(-2)}
\]

\[
x = \frac{-17 \pm \sqrt{289 - 168}}{-4}
\]

\[
x = \frac{-17 \pm \sqrt{121}}{-4}
\]

\[
x = \frac{-17 \pm 11}{-4}
\]
Las soluciones son

$$x = \frac{-17 + 11}{-4} = \frac{-6}{-4}$$

$$x = \frac{3}{2} \text{ Primera solución}$$

$$x = \frac{-17 - 11}{-4} = \frac{-28}{-4}$$

$$x = 7 \text{ Segunda solución}$$

- Resolver la ecuación

$$\frac{x + 3}{6x^2 + 13x + 6} - \frac{x}{2x^2 + 5x + 3} = \frac{x}{3x^2 + 5x + 2}$$

Solución: factoricemos en primer lugar

$$\frac{x + 3}{(2x + 3)(3x + 2)} - \frac{x}{(2x + 3)(x + 1)} = \frac{x}{(3x + 2)(x + 1)}$$

El mcm de los factores es $(2x + 3)(3x + 2)(x + 1)$. Multiplicando tenemos que

$$(2x + 3)(3x + 2)(x + 1) \cdot \frac{x + 3}{(2x + 3)(3x + 2)} - (2x + 3)(3x + 2)(x + 1) \cdot \frac{x}{(2x + 3)(x + 1)} = (2x + 3)(3x + 2)(x + 1) \cdot \frac{x}{(3x + 2)(x + 1)}$$

Simplificando los factores obtenemos lo siguiente

$$(x + 1)(x + 3) - x(3x + 2) = x(2x + 3)$$

$$x^2 + 4x + 3 - 3x^2 - 2x = 2x^2 + 3x$$

$$4x^2 + x - 3 = 0$$

Resolviendo la ecuación cuadrática resultante tenemos que

$$x = \frac{-1 \pm \sqrt{(1)^2 - 4(4)(-3)}}{2(4)}$$

$$x = \frac{-1 \pm \sqrt{1 + 48}}{8}$$

136
\[x = \frac{-1 \pm \sqrt{49}}{8} \]

\[x = \frac{-1 \pm 7}{8} \]

Las soluciones son:

\[x = \frac{-1 + 7}{8} = \frac{6}{8} = \frac{3}{4} \]

La segunda solución es

\[x = \frac{-1 - 7}{8} = \frac{-8}{8} = -1 \]

Algebraicamente hemos encontrado dos soluciones, sin embargo, notemos que la solución \(x = -1 \) anularía el factor \((x + 1)\) que está en varios de los denominadores; por lo tanto, la única solución de la ecuación es \(x = \frac{3}{4} \).

EJERCICIOS PROPUESTOS:

Resolver las siguientes ecuaciones con expresiones racionales

1. \(\frac{2x}{x^2-1} + \frac{x}{x^2+3x+2} = \frac{1}{x^2+x-2} \)
2. \(\frac{3}{x+2} - \frac{2x-1}{x^2-4} = \frac{x}{x-2} \)
3. \(\frac{3x-4}{x^2-16} + \frac{2x}{x^2+7x+12} = \frac{5x-3}{x^2-x-12} - \frac{6x}{x+3} \)
4. \(\frac{-5}{x+2} + \frac{-3}{x^2-25} = \frac{x+1}{x^2+7x+10} - \frac{2x-3}{x^2-3x-10} \)
5. \(\frac{5}{x} - \frac{2}{x^2-x} = \frac{3}{x-1} \)
6. \(\frac{x+1}{4x^2-9} + \frac{2}{6x^2+13x+6} = \frac{-2}{6x^2-5x-6} \)
7. \(\frac{3}{x^2-49} + \frac{2}{x^2+9x+14} = \frac{4}{x^2-5x-14} - \frac{2}{x+2} \)
8. \(\frac{-3}{x^2-100} - \frac{1}{x+10} = \frac{-4}{x-10} \)
9. \(\frac{6}{x^2} + \frac{5}{x^3+x^2} = \frac{-4}{x+1} \)
10. \(\frac{x+1}{x-1} + \frac{2x-3}{x+2} = \frac{5}{x-1} \)
3.5 Ecuaciones con Expresiones Irracionales

Definición de Ecuación con Expresiones Irracionales: este tipo de ecuaciones se caracteriza por tener raíces indicadas en uno o ambos lados de la igualdad. Un ejemplo de esta clase de ecuaciones es

\[\sqrt{x + 1} = 2\sqrt{x^2 + 1} \]

Nota: para efectos de este texto, abordaremos las ecuaciones con raíces cuadradas indicadas. Naturalmente, los procedimientos y recomendaciones aplican para raíces de diferente índice.

Recomendaciones para la solución de ecuaciones con expresiones irracionales: para solucionar una ecuación con expresiones irracionales recomendamos los siguientes pasos.

1. Si en la ecuación se encuentra solo una raíz, se debe ubicar sola a un lado del igual para luego elevar al cuadrado a ambos lados de la igualdad.
2. Si hay dos raíces en la ecuación, lo recomendable es aislar una de ellas y elevar al cuadrado a ambos lados del igual. Si luego de esto aparece otra raíz, se aísla nuevamente hasta que no queden raíces.
3. Si hay más de dos raíces, se deben agrupar convenientemente a lado y lado del igual para elevar al cuadrado y eliminar tantos radicales como sea posible.
4. Debemos tener cuidado nuevamente con soluciones extrañas, en este caso, que ocasionen raíces de números negativos.

Los siguientes ejemplos ilustrarán las indicaciones expresadas arriba

- Resolver la ecuación \(\sqrt{x^2 + 6x + 2} = 4x - 2 \)

Solución: notemos que en esta ecuación se encuentra solo una raíz cuadrada, de modo que la aislaremos para elevar al cuadrado. Veamos

\[\sqrt{x^2 + 6x} = 4x - 4 \]

Elevemos al cuadrado para obtener

\[(\sqrt{x^2 + 6x})^2 = (4x - 4)^2 \]
\[x^2 + 6x = 16x^2 - 32x + 16 \]

Finalmente resolvamos la ecuación resultante (notemos que en este caso es cuadrática, por tanto agrupemos todos los términos a un lado del igual)

\[15x^2 - 38x + 16 = 0 \]

De modo que

\[x = \frac{-(-38) \pm \sqrt{(-38)^2 - 4(15)(16)}}{2(15)} \]

\[x = \frac{38 \pm \sqrt{1444 - 960}}{30} \]

\[x = \frac{38 \pm \sqrt{484}}{30} \]

\[x = \frac{38 \pm 22}{30} \]

Las soluciones son

\[x = \frac{38 + 22}{30} = \frac{60}{30} \]

\[x = 2 \]

La segunda solución es

\[x = \frac{38 - 22}{30} = \frac{16}{30} \]

\[x = \frac{8}{15} \]

- Resolver la ecuación \(\sqrt{x + 1} + 2 = \sqrt{x - 4} + 3 \)

Solución: notemos que en esta ecuación se encuentran dos raíces. Aislemos una de ellas

\[\sqrt{x + 1} - 1 = \sqrt{x - 4} \]

Elevemos al cuadrado
\[(\sqrt{x} + 1 - 1)^2 = (\sqrt{x} - 4)^2\]

Recordemos que en el paréntesis del lado izquierdo hay un binomio, por lo tanto, debemos aplicar el producto notable correspondiente

\[(\sqrt{x} + 1)^2 - 2(\sqrt{x} + 1) + 1 = x - 4\]
\[x + 1 - 2(\sqrt{x} + 1) + 1 = x - 4\]

Aislemos nuevamente la raíz resultante

\[6 = 2(\sqrt{x} + 1)\]
\[3 = \sqrt{x} + 1\]

Elevando al cuadrado nuevamente obtenemos

\[3^2 = (\sqrt{x} + 1)^2\]
\[9 = x + 1\]

Finalmente \(x = 8\) es la solución a la ecuación

- Resolver la ecuación \(\sqrt{m - 1} + \sqrt{m + 7} - 2\sqrt{m + 2} = 0\)

Solución: en esta ecuación tenemos tres raíces, de modo que agruparemos dos de ellas y elevaremos al cuadrado.

\[\sqrt{m - 1} + \sqrt{m + 7} = 2\sqrt{m + 2}\]
\[(\sqrt{m - 1} + \sqrt{m + 7})^2 = (2\sqrt{m + 2})^2\]
\[(\sqrt{m - 1})^2 + 2\sqrt{(m - 1)(m + 7)} + (\sqrt{m + 7})^2 = 4(m + 2)\]
\[m - 1 + 2\sqrt{m^2 + 6m - 7} + m + 7 = 4m + 8\]

Aislemos a la raíz indicada en el lado izquierdo. Al otro lado ubicaremos los términos obtenidos luego de simplificar

\[2\sqrt{m^2 + 6m - 7} = 2m + 2\]

Notemos que podemos extraer factor común al lado derecho y simplificar con el coeficiente de la raíz
\[2\sqrt{m^2 + 6m - 7} = 2(m + 1) \]
\[\sqrt{m^2 + 6m - 7} = m + 1 \]
\[(\sqrt{m^2 + 6m - 7})^2 = (m + 1)^2 \]
\[m^2 + 6m - 7 = m^2 + 2m + 1 \]

Finalmente, luego de simplificar obtenemos

\[4m = 8 \]

De modo que \(m = 2 \) es la solución a la ecuación

- Resolver la ecuación \(\sqrt{4n - 3} - \sqrt{n - 2} = \sqrt{3n - 5} \)

Solución: en esta ecuación tenemos tres raíces.

\[(\sqrt{4n - 3} - \sqrt{n - 2})^2 = (\sqrt{3n - 5})^2 \]
\[(\sqrt{4n - 3})^2 - 2\sqrt{4n - 3}(n - 2) + (\sqrt{n - 2})^2 = 3n - 5 \]
\[4n - 3 - 2\sqrt{4n^2 - 11n + 6} + n - 2 = 3n - 5 \]

Aislemos al radical obtenido

\[2n = 2\sqrt{4n^2 - 11n + 6} \]
\[n = \sqrt{4n^2 - 11n + 6} \]
\[n^2 = (\sqrt{4n^2 - 11n + 6})^2 \]
\[n^2 = 4n^2 - 11n + 6 \]
\[3n^2 - 11n + 6 = 0 \]

Antes de utilizar la fórmula del estudiante, notemos que este polinomio es factorizable

\[(n - 3)(3n - 2) = 0 \]

De modo que
\[n - 3 = 0 \quad \text{ó} \quad 3n - 2 = 0 \]
\[n = 3 \quad \text{ó} \quad n = \frac{2}{3} \]

Hemos hallado dos soluciones mediante el análisis algebraico, sin embargo, sustituyamos el valor de \(n = \frac{2}{3} \) en la ecuación original

\[\sqrt{4(2/3) - 3} - \sqrt{(2/3) - 2} = \sqrt{3(2/3) - 5} \]
\[\sqrt{-1/3} - \sqrt{-4/3} = \sqrt{-3} \]

Las cuales son raíces imposibles de extraer en los números reales. Por lo tanto, esta es una solución extraña. Finalmente, la única solución válida es \(n = 3 \)

EJERCICIOS PROPUESTOS:

Resolver las siguientes ecuaciones con expresiones irracionales

1. \(\sqrt{x + 3} + \sqrt{x + 10} = 7 \)
2. \(5 - \sqrt{2x + 1} = x - 2 \)
3. \(m + 1 = \sqrt{m^2 + 9} \)
4. \(p = \sqrt{2p - 1} \)
5. \(g + 1 = \sqrt{g^2 + 6g - 23} \)
6. \(\sqrt{a} + \sqrt{a + 12} - 2\sqrt{2a + 1} = 0 \)
7. \(\sqrt{5g + 6} = \sqrt{6g - 8} \)
8. \(\sqrt{5t + 1} = \sqrt{t + 1} \)
9. \(\sqrt{x^2 + 4x + 4} = 7 \)
10. \(\sqrt{5m^2 + m + 3} - \sqrt{m + 8} = 0 \)

3.6 Sistemas de Ecuaciones 2x2

Sistemas de ecuaciones consistentes, inconsistentes y de infinitas soluciones: recordemos que un sistema de ecuaciones es un conjunto de ecuaciones indeterminadas donde el número de incógnitas es menor o igual al número de ecuaciones. Para efectos de este texto, abordaremos sistemas de dos ecuaciones lineales con dos incógnitas (2x2) y de tres ecuaciones lineales con tres incógnitas (3x3). Si un sistema de ecuaciones tiene una sola solución, decimos que el sistema es consistente; si el sistema no tiene ninguna solución decimos que es *inconsistente*, por ejemplo el sistema de ecuaciones \(\begin{cases} 2x + 3y = 1 \\ 4x + 6y = 5 \end{cases} \) no tiene ningún par de valores \(x \) e \(y \) que satisfagan simultáneamente a ambas ecuaciones.
Por otro lado, es posible que las ecuaciones tengan infinitas soluciones, en este caso diremos que las ecuaciones son equivalentes, por ejemplo el sistema
\[
\begin{align*}
2x + 3y &= 1 \\
4x + 6y &= 2
\end{align*}
\]

Métodos para resolver sistemas de ecuaciones: los métodos que utilizaremos (llamados métodos algebraicos) aplican para cualquier cantidad de ecuaciones y de cualquier grado.

a. **Método de Igualación**: para solucionar sistemas de ecuaciones por este método, basta despejar la misma incógnita en ambas ecuaciones, igualar los resultados obtenidos y finalmente despejar la incógnita indicada. Encontrado este valor, lo sustituiremos en cualquiera de los despejes realizados antes para hallar el valor de la otra incógnita. Los siguientes ejemplos ilustrarán este proceso.

- Resolver el sistema
 \[
 \begin{align*}
 2x + 3y &= 13 \\ 3x - 4y &= -6
 \end{align*}
 \]

Solución: para poder tener un orden en los procedimientos, llamaremos (1) a la primera ecuación y (2) a la segunda ecuación. Al aplicar el método de igualación, lo primero que haremos será despejar la misma incógnita en las dos ecuaciones. Cada que obtengamos una nueva ecuación, le pondremos una etiqueta numérica para no confundirnos. Veamos:

Despejemos la \(x\) en (1)

\[
2x + 3y = 13
\]
\[
x = \frac{-3y + 13}{2} \quad (3)
\]

Despejemos la \(x\) en (2)

\[
3x - 4y = -6
\]
\[
x = \frac{4y - 6}{3} \quad (4)
\]

Igualemos las ecuaciones (3) y (4)

\[
\frac{-3y + 13}{2} = \frac{4y - 6}{3}
\]

Para eliminar los denominadores, realicemos la multiplicación cruzada
\[3(-3y + 13) = 2(4y - 6)\]

\[-9y + 39 = 8y - 12\]

Resolvamos esta ecuación para \(y\)

\[39 + 12 = 8y + 9y\]

\[51 = 17y\]

\[y = 3\]

Ahora sustituymos el valor \(y = 3\) en cualquiera de los despejes, por ejemplo en la ecuación (4)

\[x = \frac{4y - 6}{3}\]

\[x = \frac{4(3) - 6}{3}\]

\[x = \frac{12 - 6}{3} = \frac{6}{3}\]

\[x = 2\]

Finalmente, el conjunto solución del sistema de ecuaciones es \(\{x = 2, y = 3\}\)

Nota: en adelante seguiremos numerando las ecuaciones iniciales y las halladas. El lector elegirá la pertinencia de este método o adoptará otro.

- Resolver el sistema \(\begin{cases} 5a - 7b = -50 \\ -4a + 6b = 42 \end{cases}\) (1)\) (2)

Solución: despejemos la incógnita \(b\) de ambas ecuaciones

De (1)

\[7b = 5a + 50\]

\[b = \frac{5a + 50}{7}\] (3)

De (2)

\[6b = 4a + 42\]

\[b = \frac{4a + 42}{6}\] (4)
Igualemos

\[\frac{5a + 50}{7} = \frac{4a + 42}{6} \]

\[6(5a + 50) = 7(4a + 42) \]

\[30a + 300 = 28a + 294 \]
\[30a - 28a = 294 - 300 \]
\[2a = -6 \]
\[a = -3 \]

Sustituyamos en (3)

\[b = \frac{5a + 50}{7} \]

\[b = \frac{5(-3) + 50}{7} \]

\[b = \frac{-15 + 50}{7} = \frac{35}{7} \]

\[b = 5 \]

Así, la solución del sistema es \[\{ a = -3, b = 5 \} \]

b. **Método de Sustitución**: para solucionar sistemas de ecuaciones por este método, debemos despejar una de las incógnitas de cualquier ecuación y \textit{sustituir} este despeje en la otra ecuación; despejamos la incógnita indicada y reemplazamos el valor encontrado en el despeje que habíamos realizado. Veamos algunos ejemplos:

- Solucionar el sistema \[\begin{align*}
5c + 8d &= 21 \\
2d + 4c &= 8
\end{align*} \]

\textit{Solución:} despejemos la incógnita \(d \) de la ecuación (1)

\[8d = -5c + 21 \]

\[d = \frac{-5c + 21}{8} \]
Ahora, esta expresión de la incógnita \(d \) la sustituiremos en la ecuación (2)
\[
2d + 4c = 8 \quad \text{Pero } d = \frac{-5c + 21}{8}, \quad \text{por tanto}
\]
\[
2 \left(\frac{-5c + 21}{8} \right) + 4c = 8
\]
Para eliminar el paréntesis haremos lo siguiente: el 2 que está afuera multiplica a los números que están adentro, el 8 que está adentro, multiplica a todos los números que están afuera (las flechas indican las operaciones que debemos realizar). Veamos
\[
2(-5c) + 2(21) + 8(4c) = 8(8)
\]
\[
-10c + 42 + 32c = 64
\]
\[
22c = 64 - 42
\]
\[
22c = 22
\]
\[
c = 1
\]
Sustituyamos este valor en la ecuación (3)
\[
d = \frac{-5c + 21}{8}
\]
\[
d = \frac{-5(1) + 21}{8}
\]
\[
d = \frac{-5 + 21}{8} = \frac{16}{8}
\]
\[
d = 2
\]
La solución del sistema es entonces \(\{c = 1, d = 2\} \)

- Resolver el sistema \(\begin{cases} 10e - 9f = 2 \quad (1) \\ 2e - 6f = -1 \quad (2) \end{cases} \)

Solución: despejemos la incógnita \(f \) de la ecuación (2)
\[
2e - 6f = -1
\]
\[
f = \frac{2e + 1}{6} \quad (3)
\]
Ahora sustituyamos en (1)
\[
10e - 9f = 2
\]
\[10e - 9 \left(\frac{2e + 1}{6} \right) = 2 \]

El 9 multiplica a los términos del numerador, mientras que el 6 multiplica a todos los números de afuera.

\[60e - 18e - 9 = 12 \]
\[42e = 12 + 9 \]
\[42e = 21 \]
\[e = \frac{1}{2} \]

Sustituyamos en (3)

\[f = \frac{2e + 1}{6} \] (3)

\[f = \frac{2(1/2) + 1}{6} \]
\[f = \frac{1 + 1}{6} = \frac{2}{6} \]
\[f = \frac{1}{3} \]

La solución al sistema es entonces

\[\begin{align*}
 e &= \frac{1}{2} \\
 f &= \frac{1}{3}
\end{align*} \]

c. Método de Reducción o Eliminación: el objetivo de este método es conseguir que la incógnita que se va a eliminar tenga el mismo coeficiente pero con signo contrario en las dos ecuaciones, todo esto con el fin de que, al sumar las ecuaciones, se elimine la incógnita en cuestión. Veamos algunos ejemplos:

- Resolver el sistema

\[\begin{align*}
 8g - 3h &= 12 \quad (1) \\
 5g + 2h &= 23 \quad (2)
\end{align*} \]

Solución: un aspecto que facilita el hallazgo de las incógnitas es que la elegida tenga signos contrarios en las ecuaciones, por tanto, la que presenta más facilidad para ser eliminada es la \(h \). Para eliminarla, necesitamos que tengan el mismo coeficiente, por tanto, multiplicaremos a toda la ecuación (1) por 2 y a toda la ecuación (2) por 3.

\[2 \times (8g - 3h = 12) \]
\[3 \times (5g + 2h = 23) \]
\[16g - 6h = 24 \\
15g + 6h = 69 \]

Hemos obtenido un sistema equivalente con los coeficientes de \(h \) iguales, ahora sumemos las igualdades término a término para obtener

\[\begin{align*}
16g - 6h &= 24 \\
15g + 6h &= 69 \\
31g &= 93
\end{align*} \]

\[g = 3 \]

Ahora sustituyamos este valor en cualquiera de las ecuaciones iniciales, por ejemplo la ecuación (2).

\[\begin{align*}
5g + 2h &= 23 \\
5(3) + 2h &= 23
\end{align*} \]

\[2h = 23 - 15 \]
\[2h = 8 \]
\[h = 4 \]

La solución del sistema es entonces \(\begin{align*} g &= 3 \\
h &= 4 \end{align*} \)

Nota: a pesar de que elegimos una de las incógnitas, pudimos elegir la otra y multiplicar de modo que los coeficientes sean iguales y con signos contrarios. Una alternativa válida para saber cuáles son los factores que hacen iguales los coeficientes, consiste en multiplicar el coeficiente de la incógnita de una de las ecuaciones por todos los términos de la otra; por ejemplo, en el ejercicio anterior, al elegir la incógnita \(g \), multiplicamos su coeficiente en la ecuación (1) por toda la ecuación (2) y su coeficiente en la ecuación (2) por toda la ecuación (1).

- **Resolver el sistema** \(\begin{align*}
7j + 3k &= 13 \\
9j + 5k &= 19
\end{align*} \) \((1) \)

Solución: en este caso no contamos con coeficientes de signos contrarios, de modo que podemos elegir cualquiera de las incógnitas para eliminar. Elijamos la \(j \) por ejemplo. Vamos a multiplicar a toda la ecuación (1) por 9 (el coeficiente de la \(j \) en la otra ecuación) y a la ecuación (2) por 7 (el coeficiente de la \(j \) en la primera ecuación). Bajo estas condiciones, aun tendrían el mismo signo, de modo que, para remediar esto, le pondremos un signo negativo a uno de los dos factores, por ejemplo al 9. Veamos

\[\begin{align*}
-9 \times 7j + 3k &= 13 \\
7 \times 9j + 5k &= 19
\end{align*} \]
Ahora

\[-63j - 27k = -117\]
\[63j + 35k = 133\]
\[\frac{8k = 16}{k = 2}\]

Sustituysamos en cualquiera de las ecuaciones iniciales

\[7j + 3k = 13\]
\[7j + 3(2) = 13\]
\[7j + 6 = 13\]
\[7j = 7\]
\[j = 1\]

La solución del sistema es \(\{j = 1, k = 2\}\)

EJERCICIOS PROPUESTOS:

Resolver los siguientes sistemas de ecuaciones

1. \(\begin{cases} 5x + 4y = 22 \\ -2x - 7y = -25 \end{cases}\)
2. \(\begin{cases} 4m + 3n = 7 \\ 5m - 7n = -2 \end{cases}\)
3. \(\begin{cases} 2g + 6k = 7 \\ 4g + 12k = 8 \end{cases}\)
4. \(\begin{cases} 8f - 5r = 1 \\ 12f + 10r = 5 \end{cases}\)
5. \(\begin{cases} x + y = 7 \\ x - y = 3 \end{cases}\)
6. \(\begin{cases} 4b + 9a = 26 \\ a - 5b = -8 \end{cases}\)
7. \(\begin{cases} 10h - 4t = 0 \\ h + t = 7 \end{cases}\)
8. \(\begin{cases} f + 5y = 2 \\ 7f - 15y = 4 \end{cases}\)
9. \(\begin{cases} \frac{1}{2}x - \frac{1}{3}y = -2 \\ \frac{1}{5}x + \frac{1}{7}y = 5 \end{cases}\)
10. \(\begin{cases} 3x + 2y = 14 \\ -3y + 5x = -21 \end{cases}\)
11. \(\begin{cases} 8p + 3m = 33 \\ p - m = 0 \end{cases}\)
12. \(\begin{cases} d + 5e = 21 \\ 5d + e = 9 \end{cases}\)
3.7 Sistemas de Ecuaciones 3x3

De manera análoga a los sistemas anteriormente vistos, en este caso tenemos tres ecuaciones lineales con máximo tres incógnitas, para las cuales, para efectos de este texto, encontraremos sus valores por el método de reducción (naturalmente todos los métodos son válidos, pero utilizaremos reducción por su facilidad en los cálculos).

Método de reducción para sistemas 3x3: para resolver un sistema 3x3 por el método de reducción recomendamos seguir los siguientes pasos:

1. Elegir la incógnita que se va a eliminar, por lo general esta elección depende de quién solucionará el ejercicio, pero podemos decir que una clave es revisar la incógnita que tenga coeficientes más pequeños y signos contrarios.

2. Elegida la incógnita, combinamos dos de las ecuaciones (por ejemplo la primera y la segunda) para eliminar la incógnita escogida (recordemos que la meta es que queden con el mismo coeficiente pero con signo contrario). Luego elegimos otro par de ecuaciones (por ejemplo la segunda y la tercera) para eliminar la misma incógnita.

3. Eliminada la incógnita tendremos un sistema 2x2 el cual podemos solucionar por el método que elijamos. Encontrado el valor de una incógnita, lo sustituimos en una de las ecuaciones del sistema 2x2 y encontrado el valor de la segunda incógnita, sustituimos en una ecuación del sistema 3x3 para finalmente encontrar el tercer valor.

Los siguientes ejemplos ilustrarán este procedimiento

- Resolver el sistema

\[
\begin{align*}
4x - y + 5z &= -6 \quad (1) \\
3x + 3y - 4z &= 30 \quad (2) \\
6x + 2y - 3z &= 33 \quad (3)
\end{align*}
\]

Solución: elijamos en primer lugar la incógnita que queremos eliminar. Vemos por ejemplo que la \(y \) tiene coeficientes -1, 3 y 2 respectivamente, además, el primer coeficiente es negativo y los otros dos son positivos. O sea que si elegimos eliminar la \(y \) podemos comparar la ecuación (1) con las ecuaciones (2) y (3), una a la vez.

Tomemos las ecuaciones (1) y (2)

\[
\begin{align*}
4x - y + 5z &= -6 \\
3x + 3y - 4z &= 30
\end{align*}
\]
Vamos a multiplicar la ecuación (1) por 3, para que el coeficiente quede igual que en la ecuación (2)

\[3 \times \begin{align*} 4x - y + 5z &= -6 \\ 3x + 3y - 4z &= 30 \end{align*} \]

\[\begin{align*} 12x - 3y + 15z &= -18 \\ 3x + 3y - 4z &= 30 \end{align*} \]

\[15x + 11z = 12 \quad (4) \]

Hagamos lo mismo con las ecuaciones (1) y (3) multiplicando a la primera ecuación por 2.

\[2 \times \begin{align*} 4x - y + 5z &= -6 \\ 6x + 2y - 3z &= 33 \end{align*} \]

\[\begin{align*} 8x - 2y + 10z &= -12 \\ 6x + 2y - 3z &= 33 \end{align*} \]

\[14x + 7z = 21 \quad (5) \]

Las ecuaciones (4) y (5) formarán el siguiente sistema 2x2

\[\begin{align*} 15x + 11z &= 12 \quad (4) \\ 14x + 7z &= 21 \quad (5) \end{align*} \]

Vamos a eliminar la \(z \), para esto, multipliquemos a la ecuación (4) por -7 y a la ecuación (5) por 11.

\[\begin{align*} -7 \times 15x + 11z &= -84 \\ 11 \times 14x + 7z &= 231 \end{align*} \]

\[\begin{align*} -105x - 77z &= -84 \\ 154x + 77z &= 231 \end{align*} \]

\[49x = 147 \]

\[x = 3 \]

Sustituyamos este valor en la ecuación (5)

\[14(3) + 7z = 21 \]

\[7z = 21 - 42 \]

\[7z = -21 \]

\[z = -3 \]
Finalmente sustituyamos estos dos valores en la ecuación (1)

\[4(3) - y + 5(-3) = -6 \]

\[y = 12 - 15 + 6 \]

\[y = 3 \]

La solución de este sistema es entonces

\[\begin{cases} x = 3 \\ y = 3 \\ z = -3 \end{cases} \]

- Solucionar el sistema

\[\begin{cases} 2x - 5y = 13 & (1) \\ 4y + z = -8 & (2) \\ x - y - z = -2 & (3) \end{cases} \]

Solución: notemos que este sistema no tiene las tres incógnitas en las tres ecuaciones, lo cual, en teoría, facilita los cálculos. Elijamos las ecuaciones (2) y (3) para eliminar a \(z \) (tienen signo contrario)

\[\begin{align*}
4y + z &= -8 \\
x - y - z &= -2
\end{align*} \]

\[\frac{x + 3y = -10}{(4)} \]

No tuvimos que multiplicar a las ecuaciones por ningún número ya que los coeficientes de \(z \) eran iguales. Formemos ahora un sistema 2x2 con las ecuaciones (1) y (4)

\[\begin{cases} 2x - 5y = 13 & (1) \\ x + 3y = -10 & (4) \end{cases} \]

Eliminemos a \(x \). Para ello, multipliquemos la ecuación (4) por -2.

\[\begin{align*}
2x &- 5y = 13 & (1) \\
-2 \times x + 3y &= -10 & (4)
\end{align*} \]

\[\begin{align*}
2x - 5y &= 13 \\
-2x - 6y &= 20 \\
-11y &= 33 \\
y &= -3
\end{align*} \]

Ahora sustituyamos este valor en (2)

\[4(-3) + z = -8 \]
\[z = -8 + 12 \]
\[z = 4 \]

Finalmente sustituimos en la ecuación (1)

\[2x - 5(-3) = 13 \]
\[2x = 13 - 15 \]
\[2x = -2 \]
\[x = -1 \]

La solución del sistema es entonces \(\begin{cases} x = -1 \\ y = -3 \\ z = 4 \end{cases} \)

EJERCICIOS PROPUESTOS:

Resolver los siguientes sistemas de ecuaciones

1. \(\begin{cases} 6x + 3y + 2z = 12 \\ 9x - y + 4z = 37 \\ 10x + 5y + 3z = 21 \end{cases} \)

2. \(\begin{cases} 8x + 3y + 5z = 6 \\ 2x - 6y - 15z = -4 \\ 4x - 10z + 9y = 3 \end{cases} \)

3. \(\begin{cases} 2a + 3b + c = 1 \\ 3a + b - c = 1 \\ 6a - 2b - c = -14 \end{cases} \)

4. \(\begin{cases} x + 2y = 19 \\ 2x - 3z = -5 \\ x + y + z = 17 \end{cases} \)

5. \(\begin{cases} 5m + 3p - 2n = 6 \\ m + n - p = 1 \\ m - p = 0 \end{cases} \)
3.8 Ecuaciones Exponenciales y Logarítmicas

Propiedades de los Logaritmos: en el segundo objeto de aprendizaje hemos abordado las propiedades de los exponentes y los radicales. Es momento de conceptualizar sobre las principales propiedades de los logaritmos, recordando que el objetivo de esta operación es encontrar el exponente al que debemos elevar la base dada para obtener la potencia también dada. La siguiente tabla resumirá las propiedades.

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potenciación y Logaritmación</td>
<td>Esta propiedad expresa la reversibilidad entre la potenciación y la logaritmación.</td>
</tr>
<tr>
<td>$\log_a x = b \text{ entonces } a^b = x$</td>
<td></td>
</tr>
<tr>
<td>Simplificación de Bases</td>
<td>El logaritmo en base a del mismo número a, es igual a 1</td>
</tr>
<tr>
<td>$\log_a a = 1$</td>
<td></td>
</tr>
<tr>
<td>Logaritmo de un producto</td>
<td>El logaritmo de un producto es la suma de los logaritmos de los factores</td>
</tr>
<tr>
<td>$\log(a \times b) = \log a + \log b$</td>
<td></td>
</tr>
<tr>
<td>Logaritmo de un cociente</td>
<td>El logaritmo de un cociente es la resta de los logaritmos de los términos de dicho cociente</td>
</tr>
<tr>
<td>$\log\left(\frac{a}{b}\right) = \log a - \log b$</td>
<td></td>
</tr>
<tr>
<td>Logaritmo de una potencia</td>
<td>En el logaritmo de una potencia, el exponente baja a multiplica al logaritmo de la base</td>
</tr>
<tr>
<td>$\log a^x = x \log a$</td>
<td></td>
</tr>
<tr>
<td>Propiedad Uniforme</td>
<td>Si dos números positivos son iguales, sus logaritmos de cualquier base son iguales</td>
</tr>
<tr>
<td>$\text{si } A = B \text{ entonces } \log A = \log B$</td>
<td></td>
</tr>
<tr>
<td>Cambio de base para logaritmos</td>
<td>Un logaritmo se puede expresar como el cociente entre los logaritmos comunes de la potencia y la base</td>
</tr>
<tr>
<td>$\log_a b = \frac{\log b}{\log a}$</td>
<td></td>
</tr>
</tbody>
</table>

Recomendaciones para la solución de ecuaciones exponenciales: si bien cada tipo de ejercicio tiene sus propias características y nivel de complejidad, podemos enunciar algunas recomendaciones básicas para la solución de ecuaciones exponenciales. Veamos:

1. **Transformar a base común:** es posible que las bases de las expresiones exponenciales se puedan transformar como potencias de una base común; este caso, lo que se debe hacer es re-expresar la ecuación en términos de la misma base y luego aplicar la propiedad uniforme de los logaritmos.

154
2. **Tomar logaritmos:** como el objetivo en una ecuación exponencial es encontrar el valor de un exponente, muchas veces es necesario bajar dicho término para poder manipularlo algebraicamente. En estos casos nos valdremos de la propiedad Logaritmo de una Potencia.

Los siguientes ejemplos mostrarán los procedimientos anteriormente explicados.

- **Resolver la ecuación** $3^{2x+1} = 27$

 Solución: notemos que el 27 se puede expresar como una potencia de 3, por tanto transformemos e igualemos

 \[3^{2x+1} = 3^3 \]

 Ya que tenemos las mismas bases, podemos expresar la igualdad también entre los exponentes (recordemos la propiedad uniforme de las potencias en el objeto 2)

 \[2x + 1 = 3 \]

 \[x = \frac{3 - 1}{2} \]

 \[x = 1 \]

 Nota: las decisiones en cada ejercicio las debe tomar el lector en cuanto al mejor procedimiento para solucionarlo. Por ejemplo, pudimos tomar Logaritmos base 3 a ambos lados del igual y llegar al mismo resultado.

- **Resolver la ecuación** $4^{x^2 + x - 3} = 8^x$

 Solución: tanto 4 como 8 son potencias de 2. Por lo tanto expresemos estas bases como potencias del mismo número para aplicar la propiedad uniforme.

 \[(2^2)^{x^2 + x - 3} = (2^3)^x \]

 Ya que tenemos potencias de potencias, escribamos las mismas bases y multipliquemos los exponentes

 \[2^{2x^2 + 2x - 6} = 2^{3x} \]

 Ahora sí podemos igualar los exponentes

 \[2x^2 + 2x - 6 = 3x \]

 \[2x^2 + 2x - 6 = 3x \]
\[2x^2 - x - 6 = 0\]
Factoricemos este polinomio para solucionar la ecuación
\[(x - 2)(2x + 3) = 0\]
Por lo tanto \(2x + 3 = 0\) ó \(x - 2 = 0\)
\[x = -\frac{3}{2}\] ó \(x = 2\)

- Solucionar la ecuación \(4^{2x-1} = 5\)

Solución: ya que aquí no hay bases comunes, debemos recurrir a la propiedad uniforme de los logaritmos para encontrar el valor de \(x\). Veamos
\[\log_4 4^{2x-1} = \log_4 5\]
Ahora, como la logaritmación y la potenciación son inversas, el logaritmo en base 4 se simplifica con el 4 al que está elevada la incógnita, es decir.
\[(2x - 1)\log_4 4 = \log_4 5\] El logaritmo de una potencia baja al exponente
\[2x - 1 = \log_4 5\] Ya que \(\log_4 4 = 1\)
\[x = \frac{\log_4 5 + 1}{2}\]

Ecuaciones exponenciales con el número \(e\): en muchas situaciones científicas, las tasas de variación son explicadas a partir de las potencias de una constante matemática llamada Número de Euler, conocida también como \(e\). Esta constante, cuyo valor aproximado es \(e \approx 2.718281\) actúa casi siempre como base en expresiones exponenciales; de modo que resolveremos un ejemplo con este valor.

Para resolver una ecuación exponencial con base \(e\) debemos reconocer cuál es su operación inversa, llamada Logaritmo Natural el cual se puede definir como un logaritmo cuya base es el número \(e\). El símbolo de esta operación es \(\ln\) aunque también sería válido representarlo como \(\log_e\) lo cual es poco común.
• Solucionar la ecuación $e^{2x-1} = 4$

Solución: vamos en tomar en primer lugar los logaritmos naturales a ambos lados de la ecuación, con el fin de eliminar la base e y bajar el exponente.

$$\ln e^{2x-1} = \ln 4$$

Ahora simplifiquemos las operaciones inversas

$$2x - 1 = \ln 4$$

Finalmente,

$$2x = \ln 4 + 1$$

$$x = \frac{\ln 4 + 1}{2}$$

Cuyo valor aproximado es $x \approx 1.2$

Recomendaciones para solucionar Ecuaciones Logarítmicas: en el caso de que la ecuación sea logarítmica, la recomendación más importante es tratar de eliminar los logaritmos mediante la propiedad uniforme. Por otro lado, esto será posible si tenemos un solo logaritmo a cada lado del igual; para lograr esto, nos valdremos de las propiedades de suma y resta de logaritmos de igual base. Veamos algunos ejemplos

• Solucionar la ecuación $\log_2(x + 2) = \log_2(-2x + 5)$

Solución: en este ejemplo tenemos un logaritmo base dos a lado y lado del igual, por lo tanto simplificaríamos y resolveríamos para x.

$$\log_2(x + 2) = \log_2(-2x + 5)$$ Ecuación dada

$$x + 2 = -2x + 5$$ Simplificando los logaritmos iguales

$$3x = 3$$

$$x = 1$$

• Solucionar $\log_3(x + 3) + \log_3(x - 1) = \log_3 5 + \log_3(2x - 3)$

Solución: dado que hay dos logaritmos a lado y lado del igual, los transformaremos en uno solo utilizando la propiedad Logaritmo de un producto.
\[
\log_3(x + 3) + \log_3(x - 1) = \log_3 5 + \log_3(2x - 3) \\
\log_3[(x + 3)(x - 1)] = \log_3[5(2x - 3)] \\
\log_3(x^2 + 2x - 3) = \log_3(10x - 15)
\]

Ahora podemos simplificar los logaritmos

\[
x^2 + 2x - 3 = 10x - 15 \\
x^2 - 8x + 12 = 0
\]

Factoricemos para resolver la ecuación

\[
(x - 6)(x - 2) = 0
\]

\[
x - 6 = 0 \quad \text{ó} \quad x = -2 \\
x = 6 \quad \text{ó} \quad x = 2
\]

- Solucionar \(\log(2x + 3) - \log 4 = \log(x - 5)\)

Solución: utilicemos la propiedad de Logaritmo de un cociente para transformar los dos logaritmos del lado izquierdo en uno solo

\[
\log(2x + 3) - \log 4 = \log(x - 5) \\
\log \frac{2x + 3}{4} = \log(x - 5)
\]

Simplifiquemos los logaritmos

\[
\frac{2x + 3}{4} = x - 5 \\
2x + 3 = 4(x - 5) \\
2x + 3 = 4x - 20 \\
23 = 2x \\
x = \frac{23}{2}
\]

- Resolver la ecuación logarítmica natural \(2 + \ln(3x - 1) = 5\)

Solución: en primer lugar despejaremos el logaritmo natural.

\[
\ln(3x - 1) = 3
\]

Ahora, para poder eliminar el logaritmo natural, debemos realizar a ambos lados la operación inversa, la cual, como hemos indicado arriba, es la potenciación con
base e. De esta manera, tomemos a los lados del igual como exponentes de la base e para luego simplificar.

$e^{\ln(3x-1)} = e^3$

Ahora,

$3x - 1 = e^3$

$3x = e^3 + 1$

$x = \frac{e^3 + 1}{3}$

EJERCICIOS PROPUESTOS:

Resolver las siguientes ecuaciones exponenciales y logarítmicas

1. $16^{2x-3} = 2^{x-3}$
2. $\log_3 x = \log_3 (2x - 1)$
3. $5^{x^2 + 5x} = 25^{-3}$
4. $\log(8x + 2) + \log(x + 9) = 2$
5. $2^{x-5} = 5$
6. $\log(x - 1) - \log 4 = \log(2x + 7)$
7. $3^{2x+1} = 27 \times 3^{4x+2}$
8. $\log(x + 3) + \log x - \log 4 = \log 1$
9. $10^{x^2} = 1000 \times 10^{-3}$
10. $\log(x + 1) + \log(x^2) = \log x^3$

3.9 Desigualdades e Inecuaciones

Concepto de Desigualdad: una desigualdad es una expresión que indica que una de las partes que la compone es mayor o menor que la otra. De una manera general, decimos que una cantidad a es mayor que b (se escribe $a > b$) si existe un número real positivo tal que sumado con b dé como resultado el número a. De manera análoga diremos que a es menor que b si la cantidad mayor es igual a la menor más un número real positivo. Las anteriores desigualdades se denominan *estrictas*, ya que hay una relación solo de mayor o menor entre las cantidades; otro tipo de desigualdad es la *irrestricta* la cual posibilita que una cantidad sea mayor o igual que otra (se simboliza $a \geq b$)

Concepto de inecuación: así como una ecuación es una variación de las igualdades, diremos que una inecuación es una desigualdad en la que una o ambas partes de la misma contiene cantidades desconocidas. Por ejemplo, la expresión $2x - 1 < 5$ es una inecuación, en este caso, de primer grado por tener mayor exponente 1. Dado lo anterior, las inecuaciones tienen las mismas
clasificaciones que las ecuaciones. En este texto abordaremos las inecuaciones lineales, cuadráticas y racionales.

Solución de una inecuación: al igual que las ecuaciones, una inecuación puede tener una, ninguna o infinita soluciones, de acuerdo a la naturaleza de la misma o de sus incógnitas. En el ejemplo anterior, vimos que \(2x - 1 < 5\). ¿Cuáles valores satisfacen la desigualdad planteada? Veamos algunos valores de \(x\).

Si \(x = 1\), entonces \(2(1) - 1 < 5\) satsface
Si \(x = 2\), entonces \(2(2) - 1 < 5\) satsface
Si \(x = 3\), entonces \(2(3) - 1 = 5\) no satsface
Podríamos sospechar que para valores más altos que 2, la solución no satsface la desigualdad, pero ¿Cómo saber cuáles son o no valores solución?
Para resolver esta inquietud, diremos que de manera más general, una inecuación requiere el mismo tratamiento que una ecuación, con algunas salvedades que explicaremos más adelante. Sin embargo, al ser una inecuación, la solución no queda restringida a uno o dos valores, ya que estos pueden ser infinitos; por ejemplo, podríamos sospechar que cualquier número menor que 3 satsface la desigualdad. Esto se simboliza \(x < 3\) y se puede representar mediante un tipo especial de conjunto llamado *intervalo*.

Intervalos y desigualdades: un intervalo es, como mencionamos anteriormente, un conjunto de números reales. De acuerdo a la forma como se expresa una desigualdad, un intervalo puede indicar la manera como se da la relación de orden. Si un extremo se incluye en un intervalo, diremos que es *cerrado* por el lado donde está el número, de otra manera, diremos que es *abierto*. Por ejemplo, si decimos \(x < 3\) podemos leerlo así: “\(x\) es un número real menor que 3” por lo tanto esta desigualdad en términos de intervalos se expresaría \((-\infty, 3)\). Si tenemos la expresión \(x \geq 4\) leeremos “\(x\) es un número mayor o igual a 4” y lo indicamos \([4, +\infty)\). Finalmente, si tenemos la desigualdad simultánea \(-5 < x \leq 2\) leemos “\(x\) es un número mayor que -5 y menor o igual a 2”, esto lo indicamos así \((-5, 2]\)

Nota: Nótese que por el lado que indicamos una relación de mayor o igual o menor o igual, hemos cerrado con corchetes \([\]\), mientras que los números que solo se relacionan con mayor o menor solo tienen paréntesis \((\)\). Como el infinito no es un número, solo podemos encerrarlo con paréntesis.

Multiplicación de una inecuación por números negativos: la principal propiedad que difiere de las conocidas para las ecuaciones es la multiplicación por números negativos. Si una desigualdad se multiplica por un número negativo, el
sentido de la desigualdad cambia. Por ejemplo, si sabemos que \(3 < 5\), al multiplicar por -2 obtenemos \(-6 > -10\).

Recomendaciones para solucionar inecuaciones lineales: en términos generales, diremos que para solucionar una inecuación lineal debemos hacer lo siguiente:

1. Agrupar los números a un lado de la desigualdad y las incógnitas al otro lado.
2. Despejar la incógnita recordando las propiedades válidas para las ecuaciones.

Veamos algunos ejemplos

- **Solucionar la inecuación** \(5x - 1 < 2x + 5\)

Solución: esta inecuación es lineal ya que el mayor exponente de la incógnita es 1. Veamos la solución

\[
\begin{align*}
5x - 2x &< 5 + 1 \\
3x &< 6 \\
x &< 2
\end{align*}
\]

La solución, expresada como desigualdad es \(x < 2\); si lo expresamos como intervalo tenemos \((-\infty, 2)\) y finalmente, si representamos en una recta real la solución, obtendremos

![Gráfico 10. Solución gráfica de la inecuación 5x - 1 < 2x + 5](image)

Fuente: propia

Nótese que cuando el intervalo es abierto, el punto extremo donde ubicamos al 2, es un círculo abierto, mientras que si el intervalo fuera cerrado, el círculo es relleno.

- **Solucionar la inecuación** \(3x + 4 \geq -2x - 6\)
Solución: agrupemos incógnitas y números a lado y lado del signo mayor o igual que.

\[
3x + 2x \geq -6 - 4
\]

\[
5x \geq -10
\]

\[
x \geq -2
\]

De modo que la solución en forma de intervalo es \([-2, +\infty)\) y gráficamente, la solución se representaría

![Gráfico 11. Solución gráfica de la inecuación 3x + 4 \geq -2x - 6](image)

Fuente: propia

- Resolver la inecuación simultánea \(-2 < 5x + 3 \leq 23\)

Solución: en este tipo de ejercicios, cuando la incógnita se encuentra solo en el centro, basta despejarla de adentro hacia afuera. Veamos

\[-2 < 5x + 3 \leq 23\] Inecuación dada

\[-2 - 3 < 5x \leq 23 - 3\] Restamos 3 a ambos extremos de la desigualdad

\[-5 < 5x \leq 20\]

\[-1 < x \leq 4\] Luego de dividir entre 5

La solución en intervalo está dada por \((-1, 4]\)

Y gráficamente está dada por

![Gráfico 11. Solución gráfica de la inecuación 3x + 4 \geq -2x - 6](image)
Gráfico 12. Solución gráfica de la inecuación $-2 < 5x + 3 \leq 23$.
Fuente: propia

- Resolver la inecuación simultánea $2x + 3 \leq 8x - 3 \leq 7x + 2$

Solución: en este caso tenemos a la incógnita en las dos partes de la desigualdad; por lo tanto, vamos a separar la inecuación en dos inecuaciones. La solución de todo el ejercicio será la *intersección* de los intervalos solución de las inecuaciones parciales. Veamos

$2x + 3 \leq 8x - 3 \leq 7x + 2$ Es igual a $2x + 3 \leq 8x - 3 \land 8x - 3 \leq 7x + 2$

Vamos a resolver la primera

$2x + 3 \leq 8x - 3$
$2x - 8x \leq -3 - 3$

$-6x \leq -6$ Como vamos a dividir por -6, el sentido de la desigualdad cambia.
$x \geq 1$ Es la solución de la primera inecuación

Resolvamos la segunda

$8x - 3 \leq 7x + 2$
$8x - 7x \leq 2 + 3$
$x \leq 5$ Es la solución a la segunda inecuación

Representemos en un solo gráfico ambas soluciones. Luego señalaremos la solución común, es decir, la región que se encuentre entre las dos semirrectas simultáneamente. Veamos
Notemos que ambos intervalos pasan sobre \([1,5]\); por lo tanto esta es la solución total a la inecuación.

\[2x + 3 \leq 8x - 3 \leq 7x + 2\]

\[\text{Fuente: propia}\]

Recomendaciones para solucionar inecuaciones cuadráticas: en términos generales, diremos que para solucionar una inecuación cuadrática debemos hacer lo siguiente:

1. Agrupar todos los términos a un lado de la inecuación, de modo que quede un cero al otro lado.
2. Encontrar los números (si los hay) que hacen cero al polinomio que quedó. Con estos números se forman intervalos consecutivos.
3. Sustituimos un número de cada intervalo y vemos si satisface la desigualdad. Los intervalos que cumplan la desigualdad serán unidos y esta será la solución final al ejercicio.

Veamos algunos ejemplos

- Resolver la inecuación \(2x^2 + 7x \leq x^2 + x - 5\)

Solución: agrupemos a un lado de la desigualdad los términos.

\[2x^2 + 7x - x^2 - x + 5 \leq 0\]

\[x^2 + 6x + 5 \leq 0\]
Si resolvemos la ecuación $x^2 + 6x + 5 = 0$ obtenemos los valores $x = -5$ y $x = -1$. Formemos los siguientes intervalos $(-\infty, -5) (-5, -1) (-1, +\infty)$ y elijamos un número de cada uno para verificar la desigualdad.

En $(-\infty, -5)$ elijamos al número $x = -6$ y sustituyamos

$(-6)^2 + 6(-6) + 5 \leq 0$ Es decir $5 \leq 0$ lo cual no es cierto. Este intervalo no es parte de la solución.

En $(-5, -1)$ elijamos al número $x = -3$ y sustituyamos

$(-3)^2 + 6(-3) + 5 \leq 0$ Es decir $-4 \leq 0$ Lo cual es cierto. Por tanto este intervalo hace parte de la solución.

En $(-1, +\infty)$ elijamos al número $x = 0$ y sustituyamos

$(0)^2 + 6(0) + 5 \leq 0$ Es decir $5 \leq 0$ lo cual no es cierto. Este intervalo no es parte de la solución.

Finalmente, como la relación es \leq el intervalo solución será cerrado con corchetes a ambos lados. La solución es $[-5, -1]$

Nota: en adelante, omitiremos la representación gráfica de la solución a las inecuaciones. Queda al lector entonces esta representación con el fin de analizar las variaciones de las soluciones, tanto para intervalos abiertos como cerrados.

- Resolver la inecuación $(x + 5)(2x + 1) > (x + 2)(x + 3) + 15$

Solución: realicemos en primer lugar las multiplicaciones

$$2x^2 + 11x + 5 > x^2 + 5x + 6 + 15$$

$$2x^2 + 11x + 5 - x^2 - 5x - 21 > 0$$

$$x^2 + 6x - 16 > 0$$

Solucioniendo la ecuación $x^2 + 6x - 16 = 0$ obtenemos que $x = -8$ y $x = 2$. Por lo tanto los intervalos son $(-\infty, -8) (-8, 2) (2, +\infty)$

En $(-\infty, -8)$ Tomemos a $x = -9$
\((-9)^2 + 6(-9) - 16 > 0\) Es decir \(11 > 0\) lo cual indica que ese intervalo hace parte de la solución.

En \((-8, 2)\) Tomemos a \(x = 0\)

\((0)^2 + 6(0) - 16 > 0\) Es decir \(-16 > 0\) lo cual es incorrecto e indica que ese intervalo no hace parte de la solución.

En \((2, +\infty)\) Tomemos a \(x = 3\)

\((3)^2 + 6(3) - 16 > 0\) Es decir \(11 > 0\) lo cual indica que ese intervalo hace parte de la solución.

Unamos los dos intervalos que satisfacen la desigualdad para determinar que \((-\infty, -8) \cup (2, +\infty)\) es la solución.

- Resolver la inequación \(x^2 + 4x + 6 > 0\)

Solución: si intentamos resolver la ecuación \(x^2 + 4x + 6 = 0\) notaremos que su discriminante es menor que cero, lo cual indica que este polinomio no tiene raíces reales. Al no poder construir intervalos, lo que queda es tomar cualquier valor y sustituirllo, si satisface la desigualdad, la solución serán todos los reales, en caso contrario la solución es el conjunto vacío. En este caso tomemos por ejemplo a \(x = 0\)

\((0)^2 + 4(0) + 6 > 0\)

\(6 > 0\) Lo cual indica que la solución es el conjunto de todos los números reales.

Recomendaciones para solucionar inecuaciones racionales: en términos generales, diremos que para solucionar una inecuación racional debemos hacer lo siguiente:

1. Agrupar todos los términos a un lado de la inecuación, de modo que quede un cero al otro lado.
2. Encontrar los números (si los hay) que hacen cero a los polinomios tanto del numerador como del denominador. Con estos números se forman intervalos consecutivos.
3. Sustituimos un número de cada intervalo y vemos si satisface la desigualdad. Los intervalos que cumplan la desigualdad serán unidos y esta será la solución final al ejercicio. Debemos tener cuidado de excluir de la solución a aquellos valores que hagan cero al denominador.

Veamos algunos ejemplos

- Resolver la inecuación \(\frac{2x+5}{x-6} \geq 0 \)

Solución: ya tenemos a toda la expresión a un lado, por lo tanto igualamos cada parte a cero y formemos los intervalos

\[
2x + 5 = 0 \quad \text{Por tanto} \quad x = -\frac{5}{2}
\]

\[
x - 6 = 0 \quad \text{Por tanto} \quad x = 6
\]

Los intervalos son \((-\infty, -\frac{5}{2}) \cup (-\frac{5}{2}, 6) \cup (6, +\infty)\)

En \((-\infty, -\frac{5}{2})\) tomemos a \(x = -3\)

\[
\frac{2(-3)+5}{3-6} \geq 0 \quad \text{Es decir} \quad \frac{1}{3} \geq 0 \quad \text{Por tanto este intervalo hace parte de la solución}
\]

En \((-\frac{5}{2}, 6)\) tomemos a \(x = 0\)

\[
\frac{2(0)+5}{0-6} \geq 0 \quad \text{Es decir} \quad -\frac{5}{6} \geq 0 \quad \text{ Esto no es cierto, por tanto no hace parte este intervalo de la solución}
\]

En \((6, +\infty)\) tomemos a \(x = 7\)

\[
\frac{2(7)+5}{7-6} \geq 0 \quad \text{Es decir} \quad 19 \geq 0 \quad \text{Por tanto este intervalo hace parte de la solución}
\]

La solución es finalmente \((-\infty, -\frac{5}{2}] \cup (6, +\infty)\) Hemos dejado al intervalo \((6, +\infty)\) con paréntesis, ya que 6 es el número que anula al denominador.
Resolver \(\frac{3x+7}{-x+2} < 5 \)

Solución: ubiquemos todo a un lado de la expresión y realicemos la resta indicada.

\[
\frac{3x + 7}{-x + 2} - 5 < 0
\]

\[
\frac{(3x + 7) - 5(-x + 2)}{-x + 2} < 0
\]

\[
\frac{3x + 7 + 5x - 10}{-x + 2} < 0
\]

\[
\frac{8x - 3}{-x + 2} < 0
\]

Ahora, las soluciones del numerador y del denominador son \(x = \frac{3}{8} \) y \(x = 2 \)

Y los intervalos son \((-\infty, \frac{3}{8}) \cup (\frac{3}{8}, 2) \cup (2, +\infty) \)

En \((-\infty, \frac{3}{8}) \) Tomemos a \(x = 0 \)

\[
\frac{9(0) - 3}{-(0) + 2} < 0 \quad \text{Es decir} \quad -\frac{3}{2} < 0 \quad \text{Lo cual es cierto e indica que este intervalo hace parte de la solución.}
\]

En \((\frac{3}{8}, 2) \) Tomemos a \(x = 1 \)

\[
\frac{9(1) - 3}{-(1) + 2} < 0 \quad \text{Es decir} \quad 5 < 0 \quad \text{Lo cual no es cierto e indica que este intervalo no hace parte de la solución.}
\]

En \((2, +\infty) \) Tomemos a \(x = 3 \)

\[
\frac{9(3) - 3}{-(3) + 2} < 0 \quad \text{Es decir} \quad -21 < 0 \quad \text{Lo cual es cierto e indica que este intervalo hace parte de la solución.}
\]

La solución es finalmente \((-\infty, \frac{3}{8}) \cup (2, +\infty) \)
• Resolver la inecuación \(\frac{-x+5}{x-2} < -2x + 3 \)

Solución: ubicamos todo a un lado de la expresión y realicemos la suma indicada.

\[
-\frac{x+5}{x-2} + 2x - 3 < 0
\]

\[
\frac{(-x+5) + (x-2)(2x-3)}{x-2} < 0
\]

\[
\frac{-x+5 + 2x^2 - 7x + 6}{x-2} < 0
\]

\[
\frac{2x^2 - 8x + 11}{x-2} < 0
\]

Si solucionamos la ecuación \(2x^2 - 8x + 11 = 0 \) no obtenemos soluciones reales, por tanto, el único valor que genera intervalos es \(x = 2 \). Formemos los intervalos \((-\infty, 2) \) \((2, +\infty) \)

Ejercicios Propuestos:

Resolver las siguientes inecuaciones. Expresé el resultado como desigualdad, como intervalo y gráficamente.

1. \(5x + 1 \leq 8x + 3 \)
2. \(x^2 - 6x > -2x^2 + 3x + 12 \)
3. \(\frac{x^2-1}{x-3} \geq 0 \)
4. \(-12 \leq 5x + 2 < 8\)
5. \(2m^2 + 7(m + 3) > 2m(m - 1) + 7\)
6. \(\frac{2x+9}{x^2+5x+6} \leq 0\)
7. \(\frac{x+2}{x-3} \leq 2x\)
8. \(5x + 3 \leq 2x + 5 \leq 4x + 7\)
9. \(g^2 + 5g - 1 < -g^2 + 5g + 3\)
10. \(-5 < -2x + 3 \leq 8\)
11. \(-5x + 3 < x^2 + 8x + 1\)
12. \(\frac{2n^2-8}{n^2-49} < 0\)

3.10 Planteamiento y solución de problemas sobre ecuaciones e inecuaciones

Muchas de las situaciones que implican la toma de decisiones requieren la utilización de ecuaciones e inecuaciones para encontrar la(s) solución(es) que satisfagan las condiciones en un contexto determinado. Los siguientes problemas darán cuenta de los procedimientos y métodos vistos hasta ahora.

- Las calificaciones obtenidas hasta el momento por un estudiante en matemáticas generales, son: 2.5 3.2 3.7 4.0 3.9, faltando una sola nota. Se desea saber, ¿cuál debe ser la nota faltante para que la calificación promedio le quede en 3.6?

Solución: Supongamos que \(x\) es la nota faltante

Dado que el promedio es la suma de todos los valores entre el total escribiremos la suma y el cociente como

\[
\frac{2.5 + 3.2 + 3.7 + 4.0 + 3.9 + x}{6} = 3.6
\]

Ahora, haciendo la suma y despejando la \(x\) tenemos que

\[
17.3 + x = 21.6
\]

De modo que la nota que debe obtener el estudiante es \(x = 4.3\)

- El producto de dos números positivos es 176. Si un número es 5 unidades mayor que el otro, ¿cuáles son los números?
Solución: vamos a asignarle una incógnita a cada número.

Sea x una de las cantidades
Como una de las cantidades es 5 unidades mayor que la otra, diremos que el otro número es $x + 5$
Dadas las condiciones $x(x + 5) = 176$

$$x^2 + 5x - 176 = 0$$

Solucionando esta ecuación tenemos que $(x + 16)(x - 11) = 0$

De modo que $x = 11$ es la única solución viable para la ecuación (recordemos que en el problema los números son positivos). El otro número será $11 + 5 = 16$.

- Encontrar tres números enteros consecutivos cuya suma sea 54.

Solución: nuevamente asignemos incógnitas a los números pedidos.

Sea x el número menor
Sea $x + 1$ el número del medio
Sea $x + 2$ el número mayor

De este modo tenemos que $x + (x + 1) + (x + 2) = 54$

$$3x + 3 = 54$$

$$3x = 51$$

$$x = 17 \text{ número menor}$$

$$17 + 1 = 18 \text{ número del medio}$$

$$17 + 2 = 19 \text{ número mayor}$$

- Un inversionista tiene 20000 dólares y decide colocarlos en dos alternativas A y B, las cuales dan rendimientos en el periodo del 5% y 7%, respectivamente. Si al final se tiene una ganancia total de 1160 dólares, ¿Cuáles son las cantidades invertidas en las dos alternativas?

Solución: Sea x: Cantidad invertida en la alternativa A.
y: Cantidad invertida en la alternativa B

Como dispone de 20000 dólares, tenemos que $x + y = 20000$
Si la ganancia en A es del 5% entonces el rendimiento es 0.05x, de igual manera el rendimiento en B es de 0.07y. La suma de estos rendimientos es de 1160, de modo que 0.05x + 0.07y = 1160

El sistema de ecuaciones planteado es entonces \[\begin{align*}x + y &= 20000 \\0.05x + 0.07y &= 1160\end{align*}\]

Utilicemos el método de reducción. Multipliquemos a la primera ecuación por -0.05 para eliminar a x

\[-0.05x - 0.05y = -1000 \\0.05x + 0.07y = 1160\]

\[0.02y = 160 \]
\[y = 8000 \text{ inversión en B}\]

De modo que \[x = 20000 - 8000\]
\[x = 12000 \text{ inversión en A}\]

- Una persona tiene $8000000 para invertir en tres alternativas de negocios. Si en la primera invierte $27000000 al 1.5%; en la segunda alternativa invierte $35000000 a una tasa del 1.8%. ¿A qué tasa deberá invertir el dinero sobrante para tener unos ingresos totales de las tres alternativas de por lo menos $1400000?

Solución: llamemos x a la tasa que debemos encontrar. Analicemos los resultados de las tres alternativas

- ALTERNATIVA 1: \((27000000)(0.015) = 405000\)
- ALTERNATIVA 2: \((35000000)(0.018) = 630000\)
- ALTERNATIVA 3: \((18000000)(x)\)

La inecuación de ingresos queda planteada así:

\[405000 + 630000 + 18000000x \geq 1400000\]

Ya que debe ser por lo menos de 1400000

Efectuando operaciones, tenemos:

\[18000000x \geq 365000\]

\[x \geq \frac{365000}{18000000} \]
\[x \geq 0.02\]
Lo cual indica que si inversión debe ser mayor al 2% para que el ingreso sea de por lo menos $1400000

- En una empresa se sabe que el costo unitario de fabricación de un producto es $3.70 dólares, incluyendo la mano de obra y el material. Los costos fijos son de $7000 dólares mensuales. El artículo se vende a $5 dólares. ¿Cuál es el número mínimo de unidades que deben fabricarse y venderse al mes para que la compañía obtenga utilidades de por lo menos 6000 dólares?

Solución: supongamos que x es la cantidad de artículos que se deben producir al mes.
La utilidad es igual a los ingresos menos los costos. Además, sabemos que

\[
\text{Ingreso} = \text{Precio unitario} \times \text{número de artículos}
\]
\[
\text{Costos} = \text{costos fijos} + \text{costos variables}
\]

El ingreso está dado entonces por $5x$

Los costos son $7000 + 3.7x$ Recordemos que lo fijo son 7000 y 3.7 el precio de cada artículo.

Si se desea que la utilidad sea de por lo menos 6000 dólares, esto quedaría indicado así:

\[
5x - (7000 + 3.7x) \geq 6000
\]

Resolvamos esta inecuación

\[
5x - 7000 - 3.7x \geq 6000
\]
\[
1.3x \geq 13000
\]
\[
x \geq 10000 \text{ Unidades}
\]

La empresa debe vender por lo menos 10000 unidades para que la utilidad mensual sea de por lo menos $6000

- Un fabricante de muebles produce en serie tres productos: mesas, sillas y sillones. Las materias primas son la madera, aluminio y plástico. Cada mesa necesita una unidad de madera, 2 unidades de aluminio y una unidad de plástico; Cada silla necesita una unidad de madera, 3 unidades de
aluminio y una unidad de plástico; cada sillón necesita una unidad de madera, 5 unidades de aluminio y 2 unidades de plástico. En bodega se tienen almacenadas 400 unidades de madera, 1500 unidades de aluminio y 600 unidades de plástico. ¿Cuántas mesas, sillas y sillones deberán fabricarse si se desea utilizar todas las materias primas en inventario?

Solución: asignémosle incógnitas a cada tipo de producto

Sea \(x \) el número de mesas
Sea \(y \) el número de sillas
Sea \(z \) el número de sillones

Las unidades de madera son: 1 para cada mesa, 1 para cada silla y 1 para cada sillón, esto debe ser igual a la cantidad que hay en bodega, por tanto

\[
x + y + z = 400
\]

Las unidades de aluminio son: 2 para cada mesa, 3 para cada silla y 5 para cada sillón, esto debe ser igual a la cantidad que hay en bodega, por tanto

\[
2x + 3y + 5z = 1500
\]

Las unidades de plástico son: 1 para cada mesa, 1 para cada silla y 2 para cada sillón, esto debe ser igual a la cantidad que hay en bodega, por tanto

\[
x + y + 2z = 600
\]

El sistema conformado es entonces

\[
\begin{align*}
x + y + z &= 400 \\
2x + 3y + 5z &= 1500 \\
x + y + 2z &= 600
\end{align*}
\]

Vamos a eliminar la \(x \). Para esto, multipliquemos a la primera ecuación por -2 y sumemos término a término con la segunda ecuación

\[
\begin{align*}
-2x - 2y - 2z &= -800 \\
2x + 3y + 5z &= 1500
\end{align*}
\]

\[
y + 3z = 700 \quad (4)
\]

Ahora multipliquemos a la primera ecuación por -1 y sumemos con la tercera

\[
\begin{align*}
-x - y - z &= -400 \\
x + y + 2z &= 600
\end{align*}
\]

\[
z = 200
\]
Ahora sustituimos en (4)

\[y = 700 - 3(200) \]
\[y = 100 \]

Finalmente sustituimos en cualquiera de las iniciales

\[x + 100 + 200 = 400 \]
\[x = 100 \]

Por tanto se deben hacer 100 mesas, 100 sillas y 200 sillones para utilizar todo el inventario de la bodega.

EJERCICIOS PROPUESTOS:

En cada caso encontrar la solución del problema planteado.

1. Un fabricante de muebles produce mensualmente 80 escritorios que vende al doble de lo que le cuesta fabricarlos. Si tiene unos costos fijos de 1400000 mensuales, ¿Cuál es el costo de producir cada escritorio si sus utilidades son de 3800000 mensuales?

2. Una compañía de dulces fabrica una barra de chocolate de forma rectangular con 10 cm de largo, 5 cm de ancho y 2 cm de espesor. A causa de los incrementos en los costos, la compañía ha decidido disminuir el volumen de la barra en un drástico 28%; el grosor seguirá siendo el mismo, pero el largo y el ancho se reducirán en la misma cantidad, ¿Cuáles son las dimensiones de la nueva barra?

3. Una compañía de inversiones compró un bono de una compañía muy famosa a nivel mundial por $5000 dólares. El bono produce un rendimiento del 8% de interés anual. Quiere ahora invertir en acciones de una compañía muy acreditada en la bolsa. El precio de cada acción es de $20 dólares y da un dividendo de $0.50 dólares al año por acción ¿Cuántas acciones debe comprar la compañía de modo que de su inversión total en acciones y bonos obtenga un rendimiento del 5% anual?

4. Una compañía fabrica calculadoras científicas en dos plantas distantes. En la planta A los costos fijos son de $25000 dólares mensuales, y el costo unitario de fabricación de cada calculadora es de $20 dólares. En la planta B los costos fijos
son de $15000 dólares y fabricar una calculadora cuesta $25 dólares. ¿Cuántas calculadoras se deben fabricar en ambas plantas si los costos totales deben ser iguales?

5. El perímetro de un campo rectangular es de 2000 metros. Si el largo es 4 veces el ancho, ¿Cuáles son las dimensiones del terreno?

6. Hace varios meses una compañía adquirió un portafolio de 6 millones de dólares que contiene bonos del gobierno y acciones. Ahora, la inversión en bonos se ha incrementado en un 15%, mientras que la inversión en acciones ha disminuido su valor en un 8%. Si el valor actual del portafolio es de 6440000, ¿Cuál es el valor original de la inversión en bonos y el valor original de la inversión en acciones?

7. El día sábado en una estación de servicio se registró un total de 996 galones vendidos entre gasolina corriente y gasolina extra por un valor total de $7889100 pesos. ¿Cuántos galones de gasolina corriente y cuántos de gasolina extra se vendieron si cada galón de gasolina corriente costaba ese día $7500 y cada galón de gasolina extra costaba $8600?

8. Una empresa de la ciudad está dedicada a la elaboración y venta de tamales. La empresa asume los siguientes gastos:

- Debe pagar un alquiler mensual de $2800000.
- Pago de servicios públicos por valor de $1200000 mensualmente, en promedio.
- Pago de salario al administrador por valor de $1200000 al mes.
- Pago de un seguro por valor de $24000000 al año.

El costo de elaboración de un tamal es $4200, incluyendo la materia prima y la mano de obra, y el precio de venta de una unidad de su producto es $6000. ¿Cuántos tamales deben venderse en el mes para alcanzar el punto de equilibrio?

9. Una reconocida empresa que produce jugos está diseñando un envase para jugos de fruta que asemeja el color y la textura de las frutas reales. El envase tiene seis capas; la más interna es un polietileno que previene el contacto del producto con las otras capas del material de envase. Éste tiene forma cilíndrica (sin tapa superior) y, por razones de economía, se ha encontrado que lo más práctico es diseñarlo de tal forma que su área total sea 280cm². ¿Cuál tendría que ser el diámetro del envase si necesitan diseñarlo de forma que su altura sea 10cm?
10. El departamento de Recursos humanos de una fábrica de galletas compró, en el mes de marzo, 10 uniformes para operarios de planta y 10 pares de zapatos con un costo total de $300000; en el mes de agosto compra 20 uniformes y 30 pares de zapatos con un costo total de $700000. ¿Puede usted dar a conocer el costo de cada uniforme y de cada par de zapatos al departamento de Costos y presupuestos?

11. La comisión mensual de un vendedor de una empresa de la ciudad es de 3% de las ventas, cuando éstas están por encima de $2000000 al mes; si vende menos de eso, no recibe comisión. Si su objetivo es lograr una comisión de al menos $1000000 por mes, ¿Cuál es el volumen mínimo de ventas que debe alcanzar?

12. Una empresa de inversión ha comprado un bono de una compañía minera por 7000 dólares, el cual dará un rendimiento del 10% anual. Se desea ahora comprar acciones de una compañía de alimentos, cuya precio unitario es de 45 dólares por acción y se espera un dividendo de 1.30 dólares por acción cada año. ¿Cuántas acciones de deben comprar para que la inversión total de acciones y bonos dé un rendimiento del 6% anual?

13. Una compañía de dulces fabrica una barra de chocolate de forma rectangular con 8 cm de largo, 4 cm de ancho y 1 cm de espesor. A causa de los incrementos en los costos, la compañía ha decidido disminuir el volumen de la barra en un 10%; el grosor seguirá siendo el mismo, pero el largo y el ancho se reducirán en la misma cantidad. ¿Cuáles son las dimensiones de la nueva barra?

14. Un fabricante de muebles produce mensualmente 120 escritorios que vende al doble de lo que le cuesta fabricarlos. Si tiene unos costos fijos de 2200000 mensuales. ¿Cuál es el costo de producir cada escritorio, si sus utilidades esperadas son de 5000000 mensuales?
SOLUCIÓN A LOS EJERCICIOS PROPUESTOS:

SECCIÓN 3.2 ECUACIONES LINEALES O DE PRIMER GRADO

Resolver cada una de las siguientes ecuaciones

1. \(x = \frac{19}{13} \)
2. \(m = \frac{79}{18} \)
3. \(n = -\frac{157}{6} \)
4. \(x = -\frac{507}{64} \)
5. \(b = \frac{1}{26} \)

Despejar la variable indicada en cada expresión

6. \(x = \frac{3t+4v}{5t-2v} \)
7. \(c = \frac{-14V^2t+45t+63}{-16V^2+20t+28} \)
8. \(m = \frac{-6d-3x+5t+4}{10d+5x-10t-8} \)
9. \(s = \frac{9}{3t-5} \)
10. \(d = \frac{\sqrt{5p+2}-7}{4} \)

SECCIÓN 3.3 ECUACIONES CUADRÁTICAS O DE SEGUNDO GRADO

1. \(n = \frac{1}{\sqrt{2}} \quad n = -\frac{1}{\sqrt{2}} \)
2. \(d = 0 \)
3. \(x = 0 \quad x = \frac{36}{5} \)
4. \(b = 0 \)
5. \(m = 0 \quad m = -27 \)
6. \(m = \sqrt{10} \quad m = -\sqrt{10} \)
7. \(p = 0 \)
8. \(a = \frac{-35 \pm \sqrt{937}}{4} \)
9. \(d = \sqrt{35} \quad d = -\sqrt{35} \)
10. \(m = 0 \quad m = 4 \)
11. \(a = \frac{\sqrt[8]{90}}{8} \quad a = -\frac{\sqrt[8]{90}}{8} \)
12. \(x = 0 \)
13. \(y = \frac{25 \pm 4\sqrt{43}}{9} \)
14. \(g = 8 + \sqrt{35} \quad g = 8 - \sqrt{35} \)
15. \(j = \frac{2 \pm 2\sqrt{13}}{3} \)
16. \(r = -34 \pm 3\sqrt{129} \)
17. \(p = \pm \frac{1}{2} \sqrt{1} \left(13 + \sqrt{505} \right) \)
18. \(t = \pm \sqrt{3} + \sqrt{22} \)
19. \(h = \pm \sqrt{2} \)
20. no tiene soluciones reales

SECCIÓN 3.4 ECUACIONES CON EXPRESIONES RACIONALES

1. \(x = \frac{1}{3} \)
2. no tiene solución real
3. \(x = \pm \sqrt{\frac{58}{3}} \quad x = 0 \)
4. \(x = \frac{2 \pm \sqrt{113}}{2} \)
5. \(x = \frac{3 \pm \sqrt{65}}{4} \)
6. \(x = \frac{-13 \pm \sqrt{145}}{6} \)
7. \(x = \frac{-1 \pm \sqrt{1073}}{4} \)
8. \(x = -\frac{47}{3} \)
9. no tiene solución real
10. \(x = \frac{7 \pm \sqrt{109}}{6} \)

SECCIÓN 3.5 ECUACIONES CON EXPRESIONES IRRACIONALES

1. \(x = 6 \)
2. \(x = 4 \)
3. \(m = 4 \)
4. \(p = 1 \)
5. \(g = 6 \)
6. \(a = 4 \)
7. \(g = 2 \)
8. \(t = 0 \)
9. \(x = -9 \)
10. \(m = 1 \)

SECCIÓN 3.6 SISTEMAS DE ECUACIONES 2X2

1. \(\begin{cases} x = 2 \\ y = 3 \end{cases} \)
2. \(\begin{cases} m = 1 \\ n = 1 \end{cases} \)
3. no tiene solución
4. \(\begin{cases} f = \frac{1}{4} \\ r = \frac{1}{5} \end{cases} \)
5. \(\begin{cases} x = 5 \\ y = 2 \end{cases} \)
6. \(\begin{cases} a = 2 \\ b = 2 \end{cases} \)
7. \(\begin{cases} h = 2 \\ t = 5 \end{cases} \)
8. \(\begin{cases} f = 1 \\ y = \frac{1}{5} \end{cases} \)
9. \(\begin{cases} x = 10 \\ y = 21 \end{cases} \)
10. \(\begin{cases} x = 0 \\ y = 7 \end{cases} \)
11. \(\begin{cases} p = 3 \\ m = 3 \end{cases} \)
12. \(\begin{cases} d = 1 \\ e = 4 \end{cases} \)

SECCIÓN 3.7 SISTEMAS DE ECUACIONES 3X3

Resolver los siguientes sistemas de ecuaciones

1. \(\begin{cases} x = 5 \\ y = -4 \\ z = -3 \end{cases} \)
2. \(\begin{cases} x = \frac{1}{2} \\ y = \frac{1}{3} \\ z = \frac{1}{5} \end{cases} \)
3. \(\begin{cases} a = -2 \\ b = 3 \\ c = -4 \end{cases} \)
4. \(\begin{cases} x = 5 \\ y = 7 \\ z = 5 \end{cases} \)
5. \[\begin{align*}
(m &= 1 \\
n &= 1 \\
p &= 1
\end{align*} \]

SECCIÓN 3.8 ECUACIONES EXPONENCIALES Y LOGARÍTMICAS

1. \(x = \frac{9}{7} \)
2. \(x = 1 \)
3. \(x = -3 \) \(x = -2 \)
4. \(x = 1 \)
5. \(x = \frac{5\log(2)+\log(5)}{\log(2)} \)
6. no tiene solución real.
7. \(x = -2 \)
8. \(x = 1 \)
9. \(x = 0 \)
10. no tiene solución real.

SECCIÓN 3.9 DESIGUALDADES E INECUACIONES

1. \(x \geq -\frac{2}{3} \)
2. \(x > 4 \) ó \(x < -1 \)
3. \(x > 3 \) ó \(-1 \leq x \leq 1 \)
4. \(-\frac{14}{5} \leq x < \frac{6}{5} \)
5. \(m > -\frac{14}{9} \)
6. \(-3 < x < -2 \) ó \(x \leq -\frac{9}{2} \)
7. \(x \geq \frac{1}{4}(7 + \sqrt{65}) \) ó \(\frac{1}{4}(7 - \sqrt{65}) \leq x < 3 \)
8. \(-1 \leq x \leq \frac{2}{3} \)
9. \(-\sqrt{2} < g < \sqrt{2} \)
10. \(-\frac{5}{2} \leq x < 4 \)
11. \(x > \frac{-13+\sqrt{177}}{2} \) ó \(x < \frac{-13-\sqrt{177}}{2} \)
12. \(-7 < n < -2 \)

SECCIÓN 3.10 PLANTEAMIENTO Y SOLUCIÓN DE PROBLEMAS SOBRE ECUACIONES E INECUACIONES

1. $65000
2. 9cm x 4cm x 2cm
3. 300 acciones
4. 2000 en cada planta
5. Ancho 800m Largo 200m
6. En bonos 4 millones y en acciones 2 millones
7. 615 galones de corriente y 381 galones de extra

8. 4000 tamales

9. 7.5 cm

10. El costo de cada uniforme es $20000 y de un par de zapatos es $10000

11. $33333333 como mínimo al mes

12. 200 acciones

13. 7.725cm x 3.725cm x 1cm

14. $60000
4 MODELACIÓN DE FUNCIONES

4.1 Definición y clasificación de funciones

Concepto de relación: imaginemos un salón lleno de niños y padres de familia. Supongamos que con los padres se forma un conjunto A y con los niños se forma un conjunto B. Vamos a establecer una condición: “un elemento x de A se relaciona con un elemento y de B si x es padre de y”. Representemos gráficamente esta situación y relacionemos mediante una flecha cada elemento de A con su respectivo en B.

![Diagrama de relación entre conjuntos A y B]

Gráfico 15. Representación gráfica de la relación entre los conjuntos A y B
Fuente: propia

Del gráfico anterior podemos deducir que don Luis es padre de Mateo y Camilo, que don Álvaro es padre de Matías, que don Juan es padre de Lucas y que don Francisco es padre de Alejandro. Si llamamos \mathcal{R} a la relación “x es padre de y” formamos las parejas ordenadas (Luis, mateo); (Álvaro, Matías); (Juan, Lucas); (Francisco, Alejandro) y (Luis, Camilo). La representación de la relación \mathcal{R} como un conjunto de parejas ordenadas sería entonces:

$\mathcal{R} = \{(\text{Luis, mateo}); (\text{Álvaro, Matías}); (\text{Juan, Lucas}); (\text{Francisco, Alejandro}); (\text{Luis, Camilo})\}.$

De esta manera, definimos a una relación como un conjunto formado por las parejas ordenadas de los elementos de dos conjuntos no vacíos, bajo una condición dada. En el caso anterior, la condición es “ser padre de”. Al conjunto A, de donde sale la relación, se le conoce como conjunto de partida, mientras que al conjunto donde están los elementos que reciben la relación se denomina conjunto de llegada. A un elemento del conjunto de partida que tenga su correspondiente en el de llegada se le llama preimagen, mientras que el elemento
del conjunto de llegada que tiene pareja en el conjunto de salida se denomina imagen.

Nota: una pareja ordenada es una expresión matemática conformada por dos elementos separados por una coma. Al primer elemento se le llama abscisa, mientras que el segundo se llama ordenada. Bajo esta definición, una pareja ordenada (a, b) no es igual a la pareja (b, a) a menos que a sea igual a b.

Veamos otro ejemplo

- Dados los conjuntos $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$ y $B = \{4, 5, 6, 7, 8, 9, 10\}$ establecer la relación “x es dos unidades menor que y”

Solución: llamemos \mathcal{R} al conjunto que contendrá las parejas ordenadas. De modo que la relación tendrá los siguientes elementos.

$$\mathcal{R} = \{(2,4); (3,5); (4,6); (5,7); (6,8); (7,9)\}$$

Concepto de función: ahora imaginemos dos conjuntos A y B conformados de la siguiente manera $A = \{Juan, Mateo, Marcos, Alejandro, Matías\}$ y $B = \{Sofía, Marcela, Alejandra, Elena\}$. Los elementos del conjunto A están buscando una pareja para ir a un evento, por lo tanto, las reglas de conformación son simples:

a. Todos los hombres deben tener una y solo una pareja.
b. Las mujeres pueden tener cualquier cantidad de parejas.

Una manera de organizar las parejas puede ser:

![Gráfico 16. Representación gráfica de la relación entre los conjuntos A y B. Fuente: propia](image-url)
Vemos en el gráfico que todas las condiciones se han cumplido.

Una relación en la que se cumpla que *Todos los elementos del conjunto de partida tienen una y solo una pareja en el conjunto de llegada* se conoce con el nombre de **función**. De ese modo decimos que esta función, a la que llamamos f es una relación entre los conjuntos A y B (esto suele escribirse, si $x \in A$ y $y \in B$, como $y = f(x)$ y se lee “y es función de x”). Si $y = f(x)$ podemos decir que y “depende” del valor que tome x, motivo por el cual a la primera se le llama **variable dependiente** mientras que la segunda, **variable independiente**.

Nota: bajo la anterior definición, podemos esclarecer que toda función es una relación, pero no toda relación es una función.

Funciones de Variable Real: si una función relaciona al conjunto de los números reales con el mismo conjunto de los números reales bajo una condición establecida, diremos que esta función es de **variable real**. Por lo general, utilizaremos expresiones algebraicas para indicar la relación entre los elementos del conjunto de partida con los del conjunto de llegada, por ejemplo, la función $y = 2x + 1$ significa que “dado un número real x, este se debe multiplicar por 2 y sumar 1 al resultado para obtener un valor y”

Las parejas ordenadas de números reales se pueden graficar en un plano llamado **plano cartesiano**, conformado por la intersección de dos rectas perpendiculares, de modo que sobre el eje horizontal se cuentan los valores de x mientras que en el eje vertical se cuentan los valores de y.

Por ejemplo, para graficar la función $y = 2x + 1$ basta darle algunos valores a x y sustituir en la función para obtener valores de y. Los datos encontrados se pueden resumir en una **tabla de valores**.

El lector deberá comprobar los datos obtenidos en esta tabla.

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-5</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Los valores que le hemos asignado a la x se han sustituido en la función con el fin de obtener una segunda representación de la función. Si todos estos puntos se ubican en un plano cartesiano y se unen convenientemente, obtendremos la
la representación gráfica de la función. Veamos la representación de la función $y = 2x + 1$ utilizando el software Geogebra\(^3\)

Gráfico 17. Representación gráfica de la función $y = 2x + 1$.
Fuente: propia

En adelante, y a menos que aclaremos otra cosa, todas las funciones analizadas serán de variable real, por lo tanto, todas las funciones $y = f(x)$ tendrán todas las x pertenecientes a \mathbb{R}, al igual que y.

Clasificación de funciones de variable real: en este texto abordaremos la siguiente clasificación de las funciones algebraicas.

a. **Polinómica:** su forma algebraica consiste en un polinomio, en esta clasificación tenemos a las funciones constante, lineal, cuadrática, etc.

b. **Racional:** es una función que se encuentra expresada como una fracción algebraica.

c. **Trascendente:** en esta clasificación podemos mencionar funciones como la exponencial y logarítmica, cuya variable independiente no se puede manipular algebraicamente como un polinomio o como fracciones algebraicas.

d. **Por tramos:** este tipo de funciones utiliza varios tipos de funciones para determinar el comportamiento de la variable en diferentes intervalos de números reales, por lo general estas funciones se definen por partes y en cada una de ellas, se utiliza un tipo diferente de función.

Evaluación de funciones: dado un número real \(x = a \), diremos que para saber cuál es el valor de la función en este número, basta sustituir este valor en la expresión algebraica que define la función. Por tanto, si \(y = f(x) \) el valor de \(f \) al sustituirlo, se conoce como \(y = f(a) \). Por ejemplo, si \(y = x^2 + 3 \), entonces para diferentes valores de número reales tendremos.

\[
\text{Si } x = 4 \text{ entonces } f(4) = (4)^2 + 3 \\
\quad = 16 + 3 \\
\quad = 19 \\
\text{Si } x = -2 \text{ entonces } f(-2) = (-2)^2 + 3 \\
\quad = 4 + 3 \\
\quad = 7
\]

4.2 Cálculo analítico del dominio y rango de una función

Definición de dominio: el dominio de una función \((D_f) \) consiste en **todos los elementos del conjunto de partida que tienen una imagen en el conjunto de llegada**. Bajo esta definición, como en una función todos los elementos del conjunto de partida deben tener imagen, entonces **todos los elementos del conjunto de partida pertenecen al dominio**. Gráficamente, el dominio de una función corresponde a la “sombra” de todos los puntos de la gráfica sobre el eje \(x \). Más adelante veremos cómo calcularlo analíticamente.

Definición de rango: el rango, o conjunto imagen de una función \((I_f) \) consiste en **todos los elementos del conjunto de llegada que tienen una preimagen en el conjunto de partida**. Dado que no hay restricciones sobre los elementos del conjunto de llegada, no podemos decir que este debe coincidir con el rango de la función. Gráficamente, el rango de una función corresponde a la “sombra” de todos los puntos de la gráfica sobre el eje \(y \).
Dadas las definiciones anteriores, tanto el dominio como el rango son, para funciones de variable real, subconjuntos de los números reales, por lo tanto, estos se van a representar como intervalos.

Cálculo analítico del dominio y el rango: para calcular el dominio de una función basta hacer lo siguiente:

1. Despejar la \(y \) de la expresión algebraica y notar donde queda comprometida la \(x \).
2. Si \(x \) está en una raíz de índice par, la expresión que se encuentra bajo esta hacemos mayor o igual a cero y solucionamos esta inecuación. El dominio de la función será el intervalo solución encontrado.
3. Si \(x \) está en un denominador, hacemos este denominador diferente de cero. El dominio serán todos números reales excepto aquellos que anulen al denominador.
4. Si \(x \) se encuentra simultáneamente en una raíz de índice par y en un denominador, o en un logaritmo, debemos hacer esta expresión mayor que cero. El dominio será el intervalo solución de esta inecuación.
5. Si \(x \) se encuentra en un numerador, en una raíz de índice impar o en exponente, el dominio serán todos los números reales.

Para calcular el rango, basta despejar la \(x \) y hacer el análisis anterior con la posición donde se encuentra \(y \).

Nota: por lo general, el rango se puede encontrar luego de graficar la función, ya que la expresión que resulta luego de despejar a la \(x \) no siempre es fácil de manipular algebraicamente. Para efectos de este texto, hallaremos el rango a ciertas funciones.

Veamos algunos ejemplos:

- Hallar el dominio de la función \(y = \frac{2x^2 - 7x + 3}{x^2 - 4} \)

Solución: vemos que aunque \(x \) se encuentre en el numerador, tenemos también a esta variable en el denominador, por lo tanto, hagamos este denominador diferente de cero y obtengamos los valores de \(x \).

\[
\begin{align*}
x^2 - 4 &\neq 0 \\
(x + 2)(x - 2) &\neq 0
\end{align*}
\]

Los valores que satisfacen esta expresión son \(x \neq 2 \) y \(x \neq -2 \). Por lo tanto el dominio estará dado por \(D_f = \mathbb{R} - \{-2, 2\} \).
Lo anterior significa que el dominio será el conjunto de todos los números reales exceptuando a 2 y -2.

- Hallar el dominio de la función \(y = \sqrt{x^2 + x - 2} \)

Solución: dado que la \(x \) se encuentra en una raíz de índice par, haremos este radicando mayor o igual a cero, veamos

\[
x^2 + x - 2 \geq 0
\]
\[
(x + 2)(x - 1) \geq 0
\]

Formando los tres intervalos y analizando un valor en cada uno de ellos tenemos que

En \((-\infty, -2)\) tenemos que si \(x = -3 \) entonces \(4 \geq 0 \) cumple

En \((-2, 1)\) tenemos que si \(x = 0 \) entonces \(-2 \leq 0 \) no cumple

En \((1, +\infty)\) tenemos que si \(x = 2 \) entonces \(4 \geq 0 \) cumple

La solución a la inecuación es entonces \((-\infty, -2] \cup [1, +\infty)\) y por lo tanto el dominio de la función también será \(D_f = (-\infty, -2] \cup [1, +\infty)\)

- Hallar el dominio de la función \(y = \frac{5x+3}{\sqrt{2x+10}} \)

Solución: dado que la \(x \) se encuentra en una raíz de índice par que se encuentra en un denominador al mismo tiempo, haremos este radicando mayor que cero, veamos

\[
2x + 10 > 0
\]
\[
x > -5
\]

La solución es el intervalo \((-5, +\infty)\) y por lo tanto el dominio es el conjunto \(D_f = (-5, +\infty)\)

- Hallar el rango de la función \(y = x^2 - 4x + 5 \)

Solución: dado que el objetivo es encontrar el rango, despejemos a la \(x \) para saber cuál es la posición en la que se encontrará la \(y \). Veamos
\[0 = x^2 - 4x + (5 - y) \] Hemos despejado a la \(x \) y encontramos una ecuación cuadrática donde la \(y \) hace parte de la constante de dicha ecuación. Apliquemos la fórmula cuadrática para obtener

\[
x = \frac{-(4) \pm \sqrt{(-4)^2 - 4(1)(5 - y)}}{2(1)}
\]
\[
x = \frac{4 \pm \sqrt{16 - 20 + 4y}}{2}
\]
\[
x = \frac{4 \pm \sqrt{-4 + 4y}}{2}
\]
\[
x = \frac{4 \pm 2\sqrt{-1 + y}}{2}
\]

Notamos entonces que luego de intentar encontrar el valor de la \(x \), la \(y \) está dentro de una raíz de índice par, por tanto, hagamos este radicando mayor o igual a cero.

\[-1 + y \geq 0 \]
\[y \geq 1 \]

Por lo tanto, el rango de la función es \(I_f = [1, +\infty) \)

- Hallar el rango de la función \(y = \frac{x+3}{2x-1} \)

Solución: despejemos a \(x \)

\[
y(2x - 1) = x + 3 \]
\[2xy - y = x + 3 \]
\[2xy - x = y + 3 \]
\[x(2y - 1) = y + 3 \]
\[x = \frac{y + 3}{2y - 1} \]

Vemos que \(y \) se encuentra en un denominador, por tanto hagamos este diferente de cero.

\[2y - 1 \neq 0 \]
\[y \neq \frac{1}{2} \]

Finalmente, el rango será \(I_f = \mathbb{R} - \left\{ \frac{1}{2} \right\} \)
EJERCICIOS PROPUESTOS:

Encontrar el dominio de las siguientes funciones

1. \(y = \frac{x+1}{x^2+x-6} \)
2. \(y = \frac{x^2+2x+1}{\sqrt{x^2-4}} \)
3. \(y = \log(2x^2 + 10x + 12) \)
4. \(y = \sqrt{\frac{x+3}{x^2-1}} \)
5. \(y = \frac{2}{4x-x^3} \)
6. \(y = \frac{2x-9}{\sqrt{x^2+x}} \)
7. \(y = \log \frac{x+4}{3x+19} \)
8. \(y = \sqrt{\frac{3}{x^2} + 5x + 6} \)
9. \(y = 7 - \frac{\sqrt{4x^2 - 100}}{x} \)
10. \(y = \frac{2x+5}{\log(2x-7)} \)

4.3 La función lineal

Variaciones Lineales: uno de los modelos matemáticos más importantes y de mayor aplicación es sin duda el modelo lineal de variación, el cual explica el cambio *proporcional* entre dos variables. La representación de esta variación en el plano cartesiano es una *línea recta* que, a menos que se indique lo contrario en un contexto específico, es infinita.

Definición de Línea recta: una recta es el conjunto de puntos del plano que, tomados cualquier par de ellos, la inclinación del segmento que los une respecto al eje \(x \) tiene el *mismo valor*. A esta inclinación se le conoce regularmente como *pendiente*.

Pendiente de una recta: en la mayoría de los casos, lo primero que se debe determinar para encontrar la ecuación de una recta es la pendiente, la cual, como dijimos anteriormente, *es una cantidad que indica la inclinación de una recta respecto al eje \(x \)*. Generalmente se simboliza con la letra \(m \) y, algebraicamente se define como el *cociente entre el cambio respecto a \(y \) y el cambio respecto a \(x \).* Veamos a partir de un razonamiento gráfico, la fórmula para la pendiente de una recta.

Supongamos que ubicamos en el plano cartesiano los puntos \((x_1, y_1)\) y \((x_2, y_2)\). Si unimos el segmento que tiene como extremos a estos puntos formamos una sección de la única recta que pasa por esos puntos.
La relación \(m \) entre los avances en \(y \) con los avances en \(x \) está dada por:

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

Dependiendo del signo obtenido, podemos enunciar la siguiente relación entre la pendiente y la orientación de la recta.

Si \(m > 0 \) decimos que la línea recta va del primer al tercer cuadrante
Si \(m < 0 \) decimos que la línea recta va del segundo al cuarto cuadrante
Si \(m = 0 \) decimos que la línea recta es horizontal, paralela al eje \(x \)
Si la línea recta es paralela al eje \(y \), decimos que la pendiente es indeterminada.

Formas de la ecuación de la línea recta: dependiendo de los elementos que se utilicen para encontrar la ecuación de una línea recta, podemos enumerar las formas más generales que representan algebraicamente a una variación lineal. Lo más importante en todo caso, es que para determinar la ecuación de una recta necesitamos *por lo menos* dos puntos, o un punto y la pendiente de esta.

1. **Forma general:** una recta, expresada en su forma general tiene la estructura \(Ax + By + C = 0 \). Vemos que tanto \(x \) como \(y \) tienen exponente 1, lo que explica que sea lineal la relación entre las variables.
2. **Forma punto-pendiente**: si tenemos un punto y una pendiente, podemos encontrar la ecuación de la recta mediante el siguiente razonamiento. Supongamos que la pendiente es \(m \), y que la recta pasa por el punto \((x_1, y_1)\). Dados estos datos, la ecuación de la recta está dada por
\[
y - y_1 = m(x - x_1)
\]
Donde \(x \) e \(y \) son las variables independiente y dependiente respectivamente. Si luego de eliminar los paréntesis igualamos todo a cero, obtendremos la forma general de la recta.

3. **Forma pendiente-intersección**: esta es quizá la forma más simple de la línea recta y la más utilizada. En este caso, la expresión algebraica nos deja ver cómo es la pendiente y con cual punto la recta corta al eje \(y \). La forma pendiente-intersección de la línea recta está dada por
\[
y = mx + b
\]
Donde \(m \) es el valor de la pendiente y \(b \) es la intersección con el eje \(y \).

Recomendaciones para encontrar la ecuación de la recta: vamos a centrar nuestra atención en la ecuación de la recta de la forma \(y = mx + b \), ya que esta, como dijimos anteriormente, explica mejor los parámetros de la recta para efectos de un análisis de la situación donde se requiera implementar un modelo lineal. Las recomendaciones más generales para encontrar la ecuación de una recta son las siguientes:

1. Si se dan dos puntos de la recta, lo primero que debemos hacer es hallar la pendiente. Luego elegimos a uno de los puntos y sustituimos en la siguiente ecuación \(y_1 = mx_1 + b \). Como los valores \(y_1 \), \(m \) y \(x_1 \) son conocidos, basta despejar a \(b \) y sustituir este valor y el de \(m \) en la forma pendiente-intersección.

2. Dados la pendiente y un punto de la recta, los sustituimos en la ecuación \(y_1 = mx_1 + b \). Como los valores \(y_1 \), \(m \) y \(x_1 \) son conocidos, basta despejar a \(b \) y sustituir este valor y el de \(m \) en la forma pendiente-intersección.

Veamos algunos ejemplos
Encontrar la ecuación de la recta que pasa por los puntos \((-3, -2)\) y \((1, 1)\)

Solución: en este caso tenemos dos puntos de la recta. Encontremos primero la pendiente.

Llamando a los puntos \(x_1, y_1\) \((-3, -2)\) y \(x_2, y_2\) \((1, 1)\), sustituiremos en la fórmula de la pendiente

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

\[
m = \frac{1 - (-2)}{1 - (-3)} = \frac{3}{4}
\]

Ahora, sabiendo los valores de \(m\) y las coordenadas de uno de los puntos, despejememos a \(b\) de la ecuación \(y_1 = mx_1 + b\). Veamos

\[
-2 = \frac{3}{4}(-3) + b
\]

\[
-2 + \frac{9}{4} = b
\]

\[
\frac{1}{4} = b
\]

Finalmente, la ecuación de la recta es \(y = mx + b\), es decir

\[
y = \frac{3}{4}x + \frac{1}{4}
\]

Interpretemos los valores de \(m\) y de \(b\). El valor de la pendiente significa que, por cada avance de 4 unidades en \(x\) a la derecha, se avancen 3 unidades en \(y\) hacia arriba. El valor de \(b\) significa que la recta corta al eje \(y\) en el punto \((0, \frac{1}{4})\)

Solo en este ejemplo haremos la representación gráfica de esta función lineal, para los demás ejemplos y los ejercicios propuestos, el lector deberá realizar tanto la tabla de valores como la gráfica correspondiente. Hemos señalado los dos puntos dados y la ecuación de la recta en la misma ventana de Geogebra. Notemos que, al ser la pendiente un número positivo, la orientación de la línea recta obtenida es del primer al tercer cuadrante. Recordemos que los cuadrantes se nombran en sentido contrario a las manecillas del reloj, comenzando con el de arriba a la derecha.
Encontrar la ecuación de la recta que pasa por el punto (−5,1) y tiene pendiente $m = −2$

Solución: en este caso tenemos un punto y la pendiente. Encontremos el valor de b.

\[y_1 = mx_1 + b \]
\[1 = (-2)(-5) + b \]
\[1 - 10 = b \]
\[-9 = b \]

La ecuación es entonces $y = mx + b$ de donde

\[y = -2x - 9 \]

Una recta pasa por los puntos (−1,3) y $(x_2,7)$. Si la pendiente de dicha recta es $\frac{2}{3}$, encontrar el valor de x_2 y la ecuación de la recta.

Solución: comencemos por la primera condición del problema. Si la pendiente es $\frac{2}{3}$ y pasa por los puntos (−1,3) y $(x_2,7)$ entonces se satisface la ecuación

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

Sustituyamos todos los valores conocidos
\[
\frac{2}{3} = \frac{7 - 3}{x_2 - (-1)}
\]
\[
\frac{2}{3} = \frac{4}{x_2 + 1}
\]

Haciendo el producto cruzado obtenemos
\[
2(x_2 + 1) = 12
\]
\[
x_2 + 1 = 6
\]
\[
x_2 = 5
\]

Por lo tanto, la recta pasa por los puntos \((-1,3)\) y \((5,7)\). Ahora, utilizando a la pendiente y a uno de los puntos, encontraremos la ecuación de la recta.

\[
y_1 = mx_1 + b
\]
\[
3 = \frac{2}{3}(-1) + b
\]
\[
3 + \frac{2}{3} = b
\]
\[
b = \frac{11}{3}
\]

La ecuación de la recta finalmente es \(y = \frac{2}{3}x + \frac{11}{3}\)

Posiciones relativas entre dos rectas: vamos a utilizar el concepto de pendiente para establecer las relaciones entre dos o más rectas en el plano.

a. **Rectas paralelas:** decimos que dos rectas \(l_1: m_1x + b_1\) y \(l_2: m_2x + b_2\) son paralelas sí y solo si sus pendientes son iguales, es decir \(m_1 = m_2\)

b. **Rectas perpendiculares:** dos rectas \(l_1: m_1x + b_1\) y \(l_2: m_2x + b_2\) son perpendiculares sí y solo si el producto de sus dos pendientes es igual a -1, es decir \(m_1 \times m_2 = -1\).

c. **Rectas secantes:** dos rectas son secantes si el producto de sus pendientes es diferente de -1 y no son iguales entre ellas.

Representaremos gráficamente un ejemplo de cada una de estas posiciones.
Gráfico 20. Gráfica de dos rectas paralelas.
Fuente: propia

En este gráfico observamos las rectas $y = 2x - 3$ y $y = 2x + 5$, las cuales tienen pendiente $m = 2$ (el coeficiente de la x en la ecuación pendiente-intersección).

Fuente: propia
En este gráfico observamos las rectas $y = 3x + 5$ y $y = -\frac{1}{3}x + 1$, las cuales tienen las pendientes $m = 3$ y $m = -\frac{1}{3}$ respectivamente. Podemos verificar que el producto de estas pendientes es -1.

Recomendaciones para solucionar problemas relacionados con posiciones relativas entre rectas: para resolver problemas relativos a este tema, debemos tener presentes las siguientes recomendaciones.

1. **Identificar los datos que se han dado:** si bien cada ejercicio tiene sus condiciones particulares, por lo general se dan uno o dos puntos de la recta que se requiere y otra recta para comparar las pendientes. También se pueden asignar un punto de la recta pedida y la pendiente de la otra recta. En cada caso se debe reconocer cual es el dato que se da y el que se requiere.

2. **Relación entre las pendientes de rectas perpendiculares:** dado que las pendientes de dos rectas perpendiculares tienen como producto -1, si nos dan una de las pendientes, para determinar la otra basta invertir este valor y cambiar el signo. Por ejemplo, si una de las pendientes dadas es $\frac{3}{4}$, la pendiente de la perpendicular a esta es $-\frac{4}{3}$; además, si una de las pendientes es 5, la pendiente de la perpendicular es $-\frac{1}{5}$.

Veamos algunos ejemplos

- Encontrar la ecuación de la recta que pasa por el punto $(-2,3)$ y es paralela a la recta $y = 2x + 5$

Solución: en este caso nos han dado un punto y la ecuación de la otra recta. De la ecuación, podemos deducir que la pendiente de esta es 2; de modo que llamaremos $m_1 = 2$ a la pendiente dada y a m_2 a la pendiente pedida.

Dado que el problema consiste en encontrar una recta paralela, la pendiente pedida también será $m_2 = 2$. Ahora utilicemos la forma pendiente-intersección.

\[3 = (2)(-2) + b\]
\[3 + 4 = b\]
\[b = 7\]
Finalmente, $y = 2x + 7$ es la recta pedida. En este caso, haremos la gráfica de ambas rectas, en los ejercicios posteriores el lector deberá representar estas funciones.

Gráfico 22. Gráfica de las rectas $y = 2x + 7$ y $y = 2x + 5$

Fuente: propia

- Encontrar la ecuación de la recta que pasa por el punto $(5, -1)$ y es perpendicular a la recta $y = -2x + 3$

Solución: en este caso también nos han dado un punto y la ecuación de la otra recta. Dado que la pendiente dada es -2 y la relación es perpendicularidad, entonces la pendiente pedida es $m_2 = \frac{1}{2}$

Ahora

$$-1 = \left(\frac{1}{2}\right) (5) + b$$

$$-1 - \frac{5}{2} = b$$

$$-\frac{7}{2} = b$$
La ecuación de la recta pedida es \(y = \frac{1}{2} x - \frac{7}{2} \)

- Encontrar la ecuación de la recta que pasa por el punto (3,4) y es paralela a la recta que pasa por los puntos (-2,5) y (0,9).

Solución: los datos que tenemos son: el punto de la recta precisada y dos puntos de la recta dada. De estos últimos dos puntos podemos deducir la pendiente dada, es decir \(m_1 \). Calculémosla:

\[
m_1 = \frac{9 - 5}{0 - (-2)} = \frac{4}{2} = 2
\]

Dado que la relación es de paralelismo, la pendiente pedida es \(m_2 = 2 \)

Ahora,

\[
4 = 2(3) + b \Rightarrow 4 - 6 = b \Rightarrow -2 = b
\]

\(y = 2x - 2 \) Es la ecuación pedida.

- Encontrar la ecuación de las rectas paralela y perpendicular a la recta \(y = x + 5 \) que pasan por el punto (5, -1)

Solución: los datos que tenemos son: la recta dada (y por lo tanto su pendiente) y el punto por el que deben pasar ambas rectas.

\[
m_1 = 1
\]

Comencemos con la recta paralela, por tanto \(m_2 = 1 \)

\[
-1 = 1(5) + b \Rightarrow -1 - 5 = b \Rightarrow b = -6
\]

La ecuación de la recta paralela es \(y = x - 6 \)

Ahora encontremos la ecuación de la perpendicular, por tanto \(m_2 = -1 \)

\[
-1 = -1(5) + b \Rightarrow -1 + 5 = b \Rightarrow b = 4
\]

La ecuación de la recta perpendicular es \(y = -x + 4 \)
Modelos lineales. Variación lineal: dado que el objetivo de este objeto de aprendizaje consiste en la modelación funcional de situaciones cotidianas, en este apartado abordaremos algunos problemas relacionados con variaciones lineales. Veamos algunos ejemplos con sus explicaciones.

- Una empresa de alquiler de autos cobra $108000 como cargo fijo más $540 por kilómetro recorrido. Otra compañía de alquiler de autos tiene una tarifa de $126000 de cargo fijo más $450 por kilómetro recorrido. ¿Cuál kilometraje debe marcar un auto alquilado para que los dos planes cuesten lo mismo? ¿Cuál de las dos empresas tiene el mejor contrato para el cliente y bajo qué condiciones?

Solución: analicemos este problema a la luz de los datos dados. Supongamos que x es la cantidad de kilómetros recorridos por un auto en cualquiera de las dos empresas. Llamemos C_A al costo de alquiler en la empresa A, mientras que C_B es el costo en la empresa B. Bajo estas condiciones

\[C_A = 108000 + 540x \] Ya que el costo fijo es $108000 y cobran $540 por cada kilómetro

\[C_B = 126000 + 450x \] Ya que el costo fijo es $126000 y cobran $450 por cada kilómetro

Para conocer el kilometraje que hará igual los costos, debemos igualar las dos tarifas, es decir

\[
108000 + 540x = 126000 + 450x \\
540x - 450x = 126000 - 108000 \\
90x = 18000 \\
x = 200 \text{ kilómetros}
\]

Esto quiere decir que cuando alguien ha recorrido 200 kilómetros, ambas empresas cobrarán lo mismo, esto es $108000 + 540(200) = $216000

Para analizar cual plan es mejor antes de 200 kilómetros, sustituyamos un valor de este intervalo en los dos modelos lineales.

Si $x = 100$ entonces

\[C_A = 108000 + 540(100) \]
\[C_A = 162000 \]

\[C_B = 126000 + 450(100) \]
\[C_A = 171000 \]

Es decir, para kilometrajes menores a 200, conviene más la empresa A. Veamos un valor mayor que 200.

Si $x = 300$ entonces
Finalmente, para kilometrajes mayores a 200 kilómetros, el plan que más conviene es el B.

- Una empresa de la ciudad estima que producir 10 artículos le cuesta $54000, mientras que producir 20 artículos cuesta $90000. Suponiendo que el número de artículos y el costo de producción se relacionan linealmente, encuentre un modelo que permita expresar el costo para x artículos producidos. Encuentre el costo de hacer 27 artículos.

Solución: dado que estas dos variables se relacionan linealmente, diremos que las parejas ordenadas $(10, 54000)$ y $(20, 90000)$ pertenecen a la misma recta. Encontremos en primer lugar la pendiente

\[m = \frac{90000 - 54000}{20 - 10} = \frac{36000}{10} = 3600 \]

$m = 3600$ Esto quiere decir que por cada producto que haga, el costo aumenta en 3600. Encontremos la ecuación de la recta

\[54000 = 3600(10) + b \]
\[54000 = 36000 + b \]
\[b = 18000 \]

La ecuación de la recta es $y = 3600x + 18000$. Finalmente, cuando $x = 27$

\[y = 3600(27) + 18000 = 115200 \]

- Una empresa que saca fotocopias estima que si vende cada una a $70 tendrá una demanda de 25000 copias, mientras que si aumenta su precio a $90, tendrá una demanda de 14000 copias. Suponiendo que las dos variables se relacionan linealmente, encuentre un modelo que exprese la variación de las copias demandadas respecto al precio de cada una de ellas.

Solución: nuevamente tenemos un modelo lineal. Los puntos que pertenecen a este modelo son $(70, 25000)$ y $(90, 14000)$. Calculemos la pendiente
\[m = \frac{14000 - 25000}{90 - 70} = \frac{-11000}{20} = -550 \]

Ahora, la ecuación de la recta es
\[25000 = -550(70) + b \]
\[25000 = -38500 + b \]
\[b = 63500 \]

La ecuación de la recta es finalmente, \[y = -550x + 63500 \] Notemos que la pendiente de esta recta es negativa, lo cual indica que las variables se relacionan inversamente (entre más se cobre por copia, menos se va a demandar)

EJERCICIOS PROPUESTOS:

Encontrar la ecuación de la(s) recta(s) pedida(s) según las condiciones dadas.

1. Pasa por los puntos \((-3,5)\) y \((7,0)\)
2. Pasa por el punto \((9,-5)\) y tiene pendiente \(m = -2\)
3. Pasa por el punto \((5,-2)\) y es paralela a la recta \(y=-3x+4\)
4. Pasa por el punto \((3,3)\) y es perpendicular a la recta que pasa por los puntos \((-5,9)\) y \((4,-2)\)
5. Encontrar la ecuación de las rectas paralela y perpendicular a la recta que pasa por los puntos \((7,-1)\) y \((2,-3)\) y que pasan por el punto \((4,5)\)
6. Encontrar la ecuación de las rectas paralela y perpendicular a la recta que pasa por los puntos \((-3,0)\) y \((5,-4)\) y que pasan por el punto \((2,2)\)
7. Una recta pasa por el punto \((-6,7)\) y es paralela a la recta cuya ecuación es \(2x+3y-7=0\), encontrar la ecuación de dicha recta.
8. Una recta pasa por el punto \((0,5)\) y es perpendicular a la recta cuya ecuación es \(-5x+9y+1=0\), encontrar la ecuación de dicha recta.
9. Encontrar la ecuación de las rectas paralelas a \(3x+5y+1=0\); la primera pasa por \((-3,1)\) y la segunda por \((5,-2)\)
10. Encontrar la ecuación de la recta que es perpendicular a la recta \(4x-2y+1=0\) y que pasa por el punto de intersección de las rectas \(y=2x-1\) y \(y=-3x+24\)

Resolver los siguientes problemas

1. Una empresa ha estimado que el costo de hacer 150 artículos será $2500 cada uno, mientras que el costo de hacer 200 artículos es de $1800. Si el costo y la cantidad de artículos se relacionan linealmente, hallar una función que exprese
el costo de producción en términos del número de artículos. Estime el costo unitario de producir 300 artículos.

2. Suponga que a usted llega la propuesta de dos empresas de telefonía celular. El plan de la empresa A, tiene un cargo fijo de $37000 y un costo por minuto hablado de $150. La empresa B tiene un cargo fijo de $25000 y un costo por minuto de $200. ¿Cuántos minutos deberá consumir en ambos planes para que el costo sea igual? ¿Cuál plan es más favorable en uno u otro caso?

3. Una empresa ha estimado sus costos de la siguiente manera: alquiler de $800000, $300000 para pagarle a sus trabajadores y un costo por artículo producido de $250. Exprese el gasto mensual de esta empresa en función del número de artículos. ¿Cuánto le cuesta a la empresa producir 150 artículos?

4. Una empresa de confecciones ha estimado que puede cobrar $2500 por prenda cortada si se hace un pedido por 400 prendas, mientras que es posible cobrar $3000 si el importe pedido es de 250 prendas. Si se sabe que hay una relación lineal entre el número de prendas pedidas y costo por unidad, encuentre un modelo que indique el precio en función del número de prendas.

5. Un automóvil distribuidor puede recorrer 240km en 3 horas viajando a velocidad constante, mientras que si el recorrido es de 400km de una ciudad a otra, el viaje duraría 5 horas a la misma velocidad. Encuentre un modelo que exprese la cantidad de kilómetros que tiene un trayecto en función del número de horas que puede viajar.

4.4 La función Cuadrática

No todas las variaciones presentan crecimientos o decrecimientos lineales; para algunas situaciones en las cuales la variable dependiente tiene crecimientos o decrecimientos a partir de algunos valores de la variable independiente, decimos que la variación puede ser cuadrática. La función cuadrática (o función polinómica de segundo grado) es de la forma \(y = ax^2 + bx + c \) con \(a \neq 0 \), su dominio son todos los números reales, ya que, como indica la expresión algebraica anterior, la \(x \) se encuentra en el numerador. En este apartado, abordaremos la función cuadrática para realizar su representación gráfica a partir de sus parámetros, y finalmente, utilizaremos modelos matemáticos para representar situaciones reales de variación.
Representación gráfica de la función de segundo grado: al igual que la función lineal, la función cuadrática tiene una representación gráfica en el plano cartesiano. La curva trazada a parir de un modelo de variación cuadrático se denomina parábola, una de las cuatro curvas especiales llamadas cónicas. Esta gráfica se caracteriza por ser una curva cóncava y abierta, para el caso de las funciones, para arriba o para abajo, dependiendo de ciertos parámetros de la expresión algebraica como veremos más adelante. En la siguiente gráfica representaremos por ejemplo a la función \(y = x^2 + 2x - 3 \).

![Gráfico de la función \(y = x^2 + 2x - 3 \).](image)

Nota: si bien la parábola como curva tiene su estudio en la geometría analítica, en este texto la abordaremos solamente como la representación de la variación de segundo grado.

Parámetros de la función cuadrática: para graficar una función cuadrática, debemos tener en cuenta ciertos parámetros y/u operaciones que determinarán la naturaleza de la variación.

1. **Coeficientes:** los números reales \(a, b \) y \(c \) influyen en la variación de la función cuadrática y la forma de la parábola. El coeficiente \(a \) indica para donde abre la parábola, de esta manera, \(si \quad a > 0 \quad la \quad parábola \quad abre \quad hacia \quad arriba, \quad mientras \quad que \quad si \quad a < 0, \quad esta \quad abrirá \quad hacia \quad abajo. \) Por otro lado, \(b \) indica para donde se da el corrimiento horizontal de la parábola, y finalmente, \(c \) indica donde la parábola cortará al eje \(y \).
2. **Vértice**: el vértice de la parábola es su punto más alto (cuando a es negativo) o el más bajo (cuando a es positivo). En cursos de cálculo o de geometría analítica, se puede demostrar que el vértice de la parábola está en el punto $V\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$; por lo tanto, luego de saber cuál es la orientación de la parábola (eso lo determina a), basta encontrar el valor $V_x = -\frac{b}{2a}$ y sustituir este en la función para obtener el valor de y.

3. **Intercepto**: luego de determinar el vértice, es conveniente saber dónde cortará la parábola a los ejes. Para calcular el intercepto con el eje x, basta hacer $y = 0$ y solucionar la ecuación para x; los valores encontrados serán los interceptos. Para el caso del eje y, basta hacer $x = 0$ y encontrar el valor de y.

Gráfica de funciones cuadráticas a partir de sus parámetros: antes de modelar funciones cotidianas mediante funciones cuadráticas, obtendremos las gráficas de algunas expresiones algebraicas que representen variaciones cuadráticas. Para tal efecto, utilizaremos los parámetros vistos anteriormente.

- Graficar la función $y = x^2 + 2x - 3$

Solución: identifiquemos los coeficientes: $a = 1, b = 2, c = -3$ Dado que el valor de a es positivo, la parábola abrirá hacia arriba.
- Vértice: hallemos la abscisa del vértice

 $$V_x = -\frac{b}{2a}$$
 $$V_x = -\frac{2}{2(1)}$$

 $$V_x = -1$$

 Sustituyamos en la función para obtener
 $$V_y = (-1)^2 + 2(-1) - 3$$

 $$V_y = -4$$

 Por tanto, el vértice quedará en el punto $(-1, -4)$
- Intersecciones: para los intersecciones con el eje x, hagamos $y = 0$

 $$0 = x^2 + 2x - 3$$

 Factoricemos y resolvamos para x
\[0 = (x + 3)(x - 1)\]
\[x = -3 \quad \lor \quad x = 1\]

Los interceptos con el eje \(x\) serán \((-3, 0)\) y \((1, 0)\)

Para el intercepto con el eje \(y\) hagamos \(x = 0\)

\[y = (0)^2 + 2(0) - 3\]
\[y = -3\]

El intercepto con el eje \(y\) será entonces \((0, -3)\)

Para tener una idea de la forma de la parábola, elaboremos una tabla de valores centrados en \(V_x\). El hallazgo de los valores de la tabla los puede verificar el lector

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>5</td>
<td>0</td>
<td>-3</td>
<td>-4</td>
<td>-3</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Con los datos anteriores, podemos graficar la siguiente parábola.

Gráfico 24. Gráfica de la función \(y = x^2 + 2x - 3\)
Fuente: propia

- Graficar la función \(y = -2x^2 + 8x - 6\)

Solución: identifiquemos los coeficientes: \(a = -2\), \(b = 8\), \(c = -6\) Dado que el valor de \(a\) es negativo, la parábola abrirá hacia abajo.
- Vértice: hallemos la abscisa del vértice

\[V_x = -\frac{b}{2a} \]

\[V_x = -\frac{8}{2(-2)} \]

\[V_x = 2 \]

Sustituyamos en la función para obtener

\[V_y = -2(2)^2 + 8(2) - 6 \]

\[V_y = 2 \]

Por tanto, el vértice quedará en el punto (2,2)

- Interceptos: para los interceptos con el eje x, hagamos \(y = 0 \)

\[0 = -2x^2 + 8x - 6 \]

Factoricemos y resolvamos para \(x \)

\[0 = -2(x - 3)(x - 1) \]

\[x = 3 \quad \vee \quad x = 1 \]

Los interceptos con el eje \(x \) serán (3,0) y (1,0)

Para el intercepto con el eje \(y \) hagamos \(x = 0 \)

\[y = -2(0)^2 + 8(0) - 6 \]

\[y = -6 \]

El intercepto con el eje \(y \) será entonces (0, -6)

Para tener una idea de la forma de la parábola, elaboraremos una tabla de valores centrados en \(V_x \). El hallazgo de los valores de la tabla los puede verificar el lector

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-16</td>
</tr>
<tr>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-6</td>
</tr>
<tr>
<td>5</td>
<td>-16</td>
</tr>
</tbody>
</table>

Con los datos anteriores, podemos graficar la siguiente parábola.
Gráfico 25. Gráfica de la función $y = -2x^2 + 8x - 6$
Fuente: propia

- Graficar la función $y = x^2 + 2x + 3$

Solución: identifiquemos los coeficientes: $a = 1, \ b = 2, \ c = 3$ Dado que el valor de a es positivo, la parábola abrirá hacia arriba.

- Vértice: hallemos la abscisa del vértice

$$V_x = -\frac{b}{2a}$$
$$V_x = -\frac{2}{2(1)}$$
$$V_x = -1$$

Sustituyamos en la función para obtener

$$V_y = (-1)^2 + 2(-1) + 3$$
$$V_y = 2$$

Por tanto, el vértice quedará en el punto $(-1,2)$
- Intercepos: para los interceptos con el eje x, hagamos $y = 0$

$$0 = x^2 + 2x + 3$$

Dado que este polinomio no es factorizable, resolvamos para x

$$x = \frac{-2 \pm \sqrt{(2)^2 - 4(1)(3)}}{2}$$

$$x = \frac{-2 \pm \sqrt{4 - 12}}{2}$$

$$x = \frac{-2 \pm \sqrt{-8}}{2} \notin \mathbb{R}$$

Como esta ecuación no tiene raíces reales, esta parábola no tiene interceptos con el eje x

Para el intercepto con el eje y hagamos $x = 0$

$$y = (0)^2 + 2(0) + 3$$

$$y = 3$$

El intercepto con el eje y será entonces $(0,3)$

Para tener una idea de la forma de la parábola, elaboremos una tabla de valores centrados en V_x. El hallazgo de los valores de la tabla los puede verificar el lector

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

Con los datos anteriores, podemos graficar la siguiente parábola.
Modelos funcionales cuadráticos: vamos a resolver algunos problemas en los cuales se aplican modelos funcionales cuadráticos. Recordemos que si bien el dominio de una función cuadrática es el conjunto de todos los números reales, en este tipo de problemas el dominio sufre algunas restricciones. Veamos

- La función de demanda para un producto es $p = 1000 - 2q$, donde p es el precio en dólares por unidad cuando q unidades son demandadas por semana por los consumidores. Encontrar el nivel de producción que maximiza el ingreso total y determinar el ingreso.

Solución: dado que el problema es de maximización, suponemos que debemos encontrar el punto más alto de una parábola, para ello, debemos modelar la situación a fin de encontrar una función cuadrática. Para conocer el ingreso de la empresa, sabemos que este siempre es igual al precio unitario por la cantidad demandada; si llamamos $I(q)$ al ingreso producido por q artículos, tenemos que

\[I(q) = p \times q \]

Pero sabemos que $p = 1000 - 2q$, de modo que la función queda expresada como

\[I(q) = (1000 - 2q)q \]
\[I(q) = 1000q - 2q^2 \]

Como queremos conocer el máximo ingreso, encontremos el vértice de esta parábola que abre hacia abajo.
De modo que la función tendrá un máximo cuando \(q = 250 \) lo cual produce un ingreso de \(I(250) = 1000(250) - 2(250)^2 \)

\[
I(250) = 250000 - 125000 \\
I(250) = 125000
\]

- La función de costo total de un fabricante está dada por

\[
C(x) = \frac{1}{4}x^2 - 3x + 400
\]

Donde \(x \) es el número de unidades producidas (en miles) y \(C(x) \) en miles de dólares. ¿Para qué nivel de producción será mínimo el costo total?

Solución: en este caso el problema es de minimización, por lo tanto, y reconociendo que la parábola abre hacia arriba, debemos encontrar también el vértice para saber qué valor hace mínimo el costo.

\[
V_x = -\frac{b}{2a} \\
V_x = -\frac{(-3)}{2\left(\frac{1}{4}\right)} \\
V_x = 6
\]

El costo mínimo se da cuando se producen 6000 artículos y el costo para este valor será de

\[
C(6) = \frac{1}{4}(6)^2 - 3(6) + 400 \\
C(6) = 9 - 18 + 400
\]

\[
C(6) = 391, \text{ es decir, 391000 dólares.}
\]

- Una compañía tiene para su producto unos costos fijos de 20000 dólares y los costos variables se describen según la función \(150 + 0.05x \), donde \(x \) es el
número de unidades fabricadas. El precio unitario de venta está dado por la función $320 - 0.08x$.

a) Formular las funciones de costo total y ganancia total.
b) Encontrar el punto de equilibrio.
c) ¿Cuál es el nivel de ventas que maximiza el ingreso?
d) ¿Cuál es el nivel de producción que maximiza la ganancia?

Solución: para formular la funciones de costo total y ganancia recordemos que el primero es la suma de los costos fijos y los variables, mientras que el segundo es la diferencia entre el ingreso y el costo total. Veamos

a) La función de costo total es: $C(x) = 20000 + (150 + 0.05x)$
 $C(x) = 20150 + 0.05x$

La función de ganancia o utilidad es:

$U(x) = \text{ingresos} - \text{Costos}$
$U(x) = (320 - 0.08x)x - (20150 + 0.05x)$
$U(x) = 320x - 0.08x^2 - 20150 - 0.05x$
$U(x) = -0.08x^2 + 319.95x - 20150$

b) El punto de equilibrio se obtiene igualando las ecuaciones de ingresos y costos:

$(320x - 0.08x^2) = 20150 + 0.05x$

Transponiendo términos tenemos que

$0 = 0.08x^2 - 319.95 + 20150$

Aplicando la fórmula cuadrática:

$$x = \frac{319.95 \pm \sqrt{319.95^2 - 4(0.08)(20150)}}{2(0.08)} = \frac{319.95 \pm 309.71}{0.16}$$

$x_1 = 3935.75$; $x_2 = 64$ son los valores para el número de unidades que darán el punto de ganancia cero.

c) Para encontrar el nivel de ventas que maximiza el ingreso, hallemos las coordenadas del vértice de la parábola dada por la función:

$I = -0.08x^2 + 320x$

Hallemos el valor de x en el vértice
\[V_x = -\frac{320}{2(-0.08)}\]
\[V_x = 2000\]

El ingreso para este valor de \(x\) será
\[I(2000) = 320000\]

d) Para encontrar el nivel de producción que maximiza la utilidad, hallemos las coordenadas del vértice de la parábola dada por la función:
\[U = -0.08x^2 + 319.95x - 20150\]

Hallemos el valor de \(x\) en la parábola
\[V_x = -\frac{319.95}{2(-0.08)} = 1999.6875 \text{ aproximadamente } 2000\]
\[U(2000) = -0.08(2000)^2 + 319.95(2000) - 20150\]
\[U(2000) = 299750\]

EJERCICIOS PROPUESTOS:

Encontrar el vértice, interceptos y gráfica de las siguientes funciones cuadráticas

1. \(y = 2x^2 + 7x - 3\)
2. \(y = -3x^2 + 12x\)
3. \(y = 5x - 4x^2 + 1\)
4. \(y = 5(x + 1) - 3x^2\)
5. \(y = \frac{1}{2}x^2 + 3x + 1\)
6. \(y = 2x^2 + 5\)
7. \(y = -\frac{3}{4}x^2 + \frac{5}{9}x + 2\)
8. \(y = 2x - x^2\)
9. \(y = 4x - x^2\)
10. \(y = 5(2x - 1)^2 + 7(x + 2)\)

Resolver los siguientes problemas

1. Una empresa de televisión por cable tiene actualmente 3500 socios que pagan $25 dólares de renta mensual, cada uno. La compañía ha determinado que por cada disminución en el costo mensual de $1 dólar, aumentara en 180 el
número de clientes. ¿Cuál deberá ser la tarifa mensual a cobrar para maximizar los ingresos de la compañía?

2. El gerente de producción de una empresa ha encontrado que su grupo de vendedores puede vender diariamente hasta 108 unidades de su exclusivo producto; por lo tanto, desea producir esa cantidad. Si se supone que todos los factores diferentes al número de trabajadores y la cantidad de unidades producidas se mantienen constantes, la función de producción puede expresarse por la ecuación $3x^2 - 27x = y$, en la que x representa el número de trabajadores y y representa el número de unidades producidas. ¿Cuántos trabajadores se necesitan para lograr esa producción? Hallar el número de unidades producidas si se tienen desde uno hasta quince trabajadores y graficar la función.

3. La función de demanda para el producto de un monopolista es $p = 400 - 2q$ y el costo promedio por unidad para producir q unidades es $\bar{C} = q + \frac{2000}{q} + 160$, donde p es el precio, en dólares por unidad. Encuentre la utilidad máxima que el monopolista puede lograr ¿A qué precio? ¿Cuántas unidades debe fabricar?

4. El nuevo zoológico de la ciudad ha estipulado el siguiente sistema de entrada de grupos de más de 35 visitantes con el fin de promover el ingreso de público: para grupos menores de 35 personas el costo es de 7000, para grupos mayores de 35 personas, el costo se reduce en 50 por persona adicional. Establezca un modelo que exprese cómo cambia el costo de ingreso de un número de personas en función del número de personas adicional que ingresa. ¿Cuántas personas han de entrar para que el ingreso del zoológico sea máximo?

5. Un estudio ha indicado que cuando se siembran 150 árboles de mangos por hectárea se da una producción promedio de 500 mangos por árbol. Además, se ha estimado que por cada árbol adicional que se siembre, la producción de cada árbol disminuye en 2 unidades. Encuentre un modelo que indique la variación del número de mangos producidos en función del número de árboles. ¿Cuántos árboles sembrados darán la producción máxima?
4.5 La función Exponencial

Definición de función exponencial: una función exponencial explica el comportamiento de variables que crecen o decrecen de manera más acelerada que en modelos de variación cuadrática. Su forma estándar está dada por \(y = a^x \) donde \(a > 0 \) y \(a \neq 1 \). En esta sección abordaremos a la función exponencial para realizar su representación gráfica y para modelar situaciones de crecimiento o decrecimiento acelerado.

Vamos en primer lugar a representar gráficamente los tipos de función que se derivan de esta.

Representación gráfica de la función exponencial: la naturaleza de la gráfica de una función exponencial la determinan dos aspectos: el signo del coeficiente \(x \) y el signo del coeficiente de \(a^x \). En primer lugar, la gráfica de \(y = a^x \) con el coeficiente de \(x \) y de \(a \) positivos, además de considerar un valor de \(a > 1 \)

Gráfico 27. Gráfica de la función \(y = 2^x \).
Fuente: propia

La siguiente gráfica corresponde a una función exponencial con coeficiente de \(x \) negativo, lo cual equivale a graficar una función con valor de \(0 < a < 1 \). De esta manera, la gráfica de \(y = 2^{-x} \) será la misma que \(y = 0.5^x \) (Verifícalo)
Finalmente, graficaremos una función exponencial con coeficiente de la base negativo

En todas las gráficas de esta función podemos apreciar que: el dominio son todos los números reales; por otro lado, las funciones en las que el coeficiente de x es positivo, pasan por el punto $(0,1)$ y finalmente, las funciones son monótonas en cuanto al crecimiento o decrecimiento.
Vamos a utilizar las herramientas y conceptos vistos hasta ahora para graficar una función exponencial.

- Graficar la función \(y = 2^x - 1 \)

Solución: para realizar esta gráfica, basta elaborar una tabla de valores con algunos números reales para ver los valores del rango.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-0.875</td>
<td>-0.75</td>
<td>-0.5</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Vamos a mostrar con un valor positivo y uno negativo cómo se hicieron los cálculos para llenar la tabla

Para \(x = 2 \)

\[
\begin{align*}
 y &= 2^2 - 1 \\
 y &= 4 - 1 \\
 y &= 3
\end{align*}
\]

Para \(x = -2 \)

\[
\begin{align*}
 y &= 2^{-2} - 1 \\
 y &= \frac{1}{4^2} - 1 \\
 y &= \frac{1}{16} - 1 \\
 y &= -\frac{1}{4} - 1 \\
 y &= -\frac{3}{4} = -0.75
\end{align*}
\]

Finalmente, la gráfica es la siguiente.
La función e^x: como mencionamos en el objeto de aprendizaje anterior, algunos modelos de crecimiento exponencial utilizan una importante constante matemática para analizar la naturaleza de dichos crecimientos. A esta base se le conoce como número de Euler, y se le representa con la letra e. En cálculo se puede demostrar mediante límites, que el valor aproximado de e es $e = 2.7182818 ...$ con infinitas cifras decimales y diferentes (es un número irracional). La gráfica de la función $y = e^x$ es similar a las que vimos anteriormente, excepto que la base es distinta. En el quinto objeto de aprendizaje profundizaremos sobre esta importante función.

Modelos de variación exponencial: algunos problemas de crecimiento o decrecimiento se pueden resolver mediante modelos de variación que se comportan de manera exponencial. En este apartado resolveremos algunos de ellos, quedándole al lector profundizar tanto en clase como en trabajo independiente, sobre esta temática.

- Un capital de 10000 dólares es colocado a una tasa de interés del 7% compuesto semestralmente durante 3 años. ¿Cuál será el monto acumulado? ¿Cuál es el interés ganado?

Solución: La fórmula que da el valor futuro de una inversión con interés compuesto es $C = P(1 + r)^t$ donde C es el monto acumulado, P es el capital inicial, r es la tasa anual y t es el tiempo. En este caso tenemos los siguientes datos

$$P = 10000; \quad r = \frac{0.07}{2 \text{ semestres}} = 0.035; \quad t = 6$$

Por tanto
\[C = 10000(1 + 0.035)^6 = 12292.55 \]

El interés ganado es el monto acumulado menos el capital inicial, es decir

\[i = 12292.55 - 10000 \]

\[i = 2292.55 \]

- El número de trabajadores en una compañía multinacional disminuye a razón del 2.5% anual. Si en estos momentos hay 350000 trabajadores, ¿Cuántos obreros habrán en 4 años?

La fórmula apropiada es similar a la que da el valor futuro de una inversión con interés compuesto pero con disminución, es decir, \(T = T_0(1 - r)^t \) donde \(T \) es el número de trabajadores en el tiempo \(t \);
- \(T_0 \) Es el número actual de trabajadores;
- \(r \) Es la tasa de disminución = 0.025;
- \(t \) Es el tiempo, es decir 4 años

Reemplazando, tenemos:

\[T = 350000(1 - 0.025)^4 = 316290.71 \]

El número de trabajadores será de 316291 aproximadamente.

- El gerente de una gran compañía pronostica el crecimiento (simbolizado con N) en el número de empleados usando la siguiente ecuación de Gompertz:

\[N = 4000(0.7)^{0.4t} \]

Donde \(t \) es el número de años después del inicio de actividades en un lugar. ¿Cuál es el número de empleados con los cuales inició actividades la compañía? ¿Cuántos empleados habrá en la compañía al finalizar el segundo año de actividades?

Solución: Para esta situación, utilizaremos la función de Gompertz, en honor al matemático Benjamín Gompertz \(N = 4000(0.7)^{0.4t} \)

Cuando la compañía comenzó actividades tenemos que \(t = 0 \) entonces:

\[N = 4000(0.7)^1 = 2800 \text{ empleados, aproximadamente.} \]

Al final del segundo año tenemos que \(t = 2 \) entonces:
\[N = 4000(0.7)^{0.4^2} = 3778 \text{ empleados, aproximadamente.} \]

- Según datos estadísticos confiables la población mundial al inicio de la década de 1990 era de 5780 millones de habitantes. En octubre de 2011 la población estimada es de 7000 millones de personas. Si consideramos la tasa de crecimiento promedio anual del 1.2%, encontrar una función exponencial que exprese la población mundial en cualquier instante \(t \). ¿Cuál es la población mundial esperada para los años 2025 y 2050?

Solución: La función matemática exponencial que da la población futura en el tiempo es:

\[P = P_0(1 + r)^t \]

Donde
- \(P \) Es la población Futura
- \(P_0 \) Es la población Actual
- \(r \) Es la tasa de crecimiento/decrecimiento
- \(t \) Es el tiempo en años

Reemplazando los datos, obtenemos:

\[P = 7000(1 + 0.012)^t \]

Contando a 2010 como \(t = 0 \), la población estimada para el año 2025 será

\[P = 7000(1 + 0.012)^{14} = 8272.27 \text{ Millones personas} \]

Finalmente, la población estimada para el año 2050 será:

\[P = 7000(1 + 0.012)^{39} = 11146.48 \text{ Millones personas} \]

EJERCICIOS PROPUESTOS:

Graficar las siguientes funciones exponenciales

1. \(y = 3^x - 2 \)
2. \(y = \left(\frac{1}{2}\right)^x + 1 \)
3. \(y = 3^{-x} - 1 \)
4. \(y = \left(\frac{1}{3}\right)^{-x} - 1 \)
5. \(y = 2^{-x} + x \)

Resolver los siguientes problemas

1. Un capital de 1500 dólares es colocado a una tasa de interés del 12% compuesto anualmente durante 5 años. ¿Cuál será el monto acumulado? ¿Cuál es el interés ganado?
2. A causa de una recesión económica, la población de cierta región rural disminuye a razón del 4.5% anual. Si en estos momentos la población es de 15000 habitantes, ¿Cuál será su número en 8 años?

3. Una compañía utiliza la curva de Gompertz \(N = 4000(0.7)^{0.6t} \) para estimar la cantidad de empleados que se pueden contratar con el fin de evitar conflictos de tipo financiero. Bajo estas condiciones, indique cuántas personas comenzaron en la empresa y cuantas se proyectan para emplear a los 5 años de funcionamiento de la empresa.

4.6 La función Logarítmica

Forma estándar de la función logarítmica: aunque inversa algebraicamente a la función exponencial, la función logarítmica ofrece también poderosas herramientas para el análisis de situaciones de crecimiento o de decrecimiento. Su forma estándar es \(y = \log_a x \) con \(a > 0 \) por definición y con \(x > 0 \) para evitar valores indeterminados. El número \(a \) como hemos indicado desde el objeto de aprendizaje 1, es conocido como *base* del logaritmo. Vamos a realizar la gráfica de una función logarítmica \(y = \log_2 x \) para analizar aspectos como curvatura y monotonía.

Gráfico 31. Gráfica de la función \(y = \log_2 x \).
Fuente: propia
Vemos en la gráfica que la función logarítmica en su forma estándar es monótona creciente, nunca toca al eje y su rango son todos los números reales, por otro lado, el punto (1,0) será constante en todas las gráficas de este tipo, ya que \(\log_a 1 = 0 \). Al igual que con la función exponencial, en este apartado dedicaremos nuestra atención a graficar una función logarítmica y resolver problemas que involucran modelos de variación logarítmica.

- Graficar la función \(y = \log_2 x + 1 \)

Solución: elaboremos una tabla de valores para esta función, teniendo en cuenta que los cálculos se simplifican si los valores para \(x \) que elijamos sean las potencias de 2. Veamos

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Asignémosle dos valores a \(x \) para analizar los razonamientos necesarios para llenar la tabla

Si \(x = 2 \)

\[
y = \log_2 2 + 1 \\
y = 1 + 1 \\
y = 2
\]

Si \(x = 0.25 \)

\[
y = \log_2 0.25 + 1 \\
y = -2 + 1 \\
y = -1
\]

La gráfica se presenta a continuación
La función \(\ln x \): así como existe una función exponencial especial que explica el crecimiento o decrecimiento de ciertas variables, existe su función logarítmica inversa, denominada función logaritmo natural, simbolizada algebraicamente como \(y = \ln x \), en otras palabras, el logaritmo natural de un número no es otra cosa que el logaritmo en base \(e \) de este, es decir, \(\ln x = \log_e x \). Dadas sus características, esta función cuenta con todas las propiedades de los logaritmos vistos en el objeto de aprendizaje 1, lo cual posibilita resolver problemas en los que el objetivo es encontrar un valor en un exponente.

Modelos de variación logarítmica: en algunos contextos de crecimiento o decrecimiento se requiere la utilización de modelos logarítmicos, sobre todo cuando se necesita saber el valor de un exponente dado un modelo exponencial. Los siguientes ejemplos darán cuenta de la implementación de herramientas vinculadas a logaritmos como operación inversa a la potenciación.

- La ecuación que da el monto acumulado de un capital de 8000 dólares, colocado al 4% compuesto anualmente es \(M = 8000(1 + 0.04)^t \). Encontrar el tiempo requerido para que el capital se duplique.

Solución: Al duplicarse quedaría el valor futuro de 16000. Entonces la ecuación quedaría:

\[
16000 = 8000(1.04)^t
\]
El objetivo es encontrar el valor de t, por lo tanto, comencemos por simplificar el 8000

$$\frac{16000}{8000} = (1.04)^t$$

$$2 = (1.04)^t$$

Tomemos logaritmos a ambos lados del igual para que la variable t pueda bajar

$$\log 2 = \log(1.04)^t$$

$$\log 2 = t \log 1.04$$

$$t = \frac{\log 2}{\log 1.04} = 17.67 \text{ Años}$$

- La ecuación de costo total para una compañía fabricar q unidades de un producto está dada por la expresión $c = \ln q + 1492$. Encontrar el nivel de producción que genera un costo total de 1500 dólares.

Solución: Reemplazando en la ecuación el costo, tenemos:

$$1500 = \ln q + 1492$$

Entonces $\ln q = 8$. Dado que las funciones logaritmo natural y e^x son inversas, elevaremos a ambos lados del igual en base e para obtener

$$e^{\ln q} = e^8$$

$$q = e^8$$

Luego, $q = 2980.95$

Eso implica que cuando se fabrican 2981 unidades se tiene un costo total de 1500 dólares.

EJERCICIOS PROPUESTOS:

Representar gráficamente las siguientes funciones logarítmicas

1. $y = \log_2(x + 1)$
2. $y = 5 - \log_3(x)$
3. $y = \log_{1/2}(x)$
4. $y = \ln(x + 2)$
Resolver los siguientes problemas

1. La ecuación que da el monto acumulado de un capital de 5000 dólares, colocado al 7.5% compuesto anualmente es $M = 5000(1 + 0.075)^t$. Encontrar el tiempo requerido para que el capital se triplique.

2. La ecuación de oferta de un fabricante está dada por la expresión:

 \[p = \log \left(\frac{q}{4} \right) + 1.75 \]

 Donde q es el número de unidades ofertadas a un precio de p dólares la unidad ¿Cuántas unidades deberá ofertar cuando el precio del producto sea de 2.50 dólares?

3. El precio, p, en dólares por metro cuadrado de una propiedad en cierta zona de una ciudad esta función de la distancia d, en millas del centro de la ciudad, según la función logarítmica:

 \[p = 105 \log(300d) + 1100 \]

 ¿Cuál es precio de una propiedad ubicada a 3 millas de distancia del centro?

SOLUCIÓN A LOS EJERCICIOS PROPUESTOS:

SECCIÓN 4.2 CÁLCULO ANALÍTICO DEL DOMINIO Y RANGO DE UNA FUNCIÓN

Encontrar el dominio de las siguientes funciones

1. $D_f = \mathbb{R} - \{-3, 2\}$
2. $D_f = (-\infty, -2) \cup (2, +\infty)$
3. $D_f = (-\infty, -3) \cup (-2, +\infty)$
4. $D_f = [-3, -1] \cup (1, +\infty)$
5. \(D_f = \mathbb{R} - \{-2, 0, 2\} \)

6. \(D_f = (-\infty, -1) \cup (0, +\infty) \)

7. \(D_f = (-\infty, -\frac{19}{3}) \cup (-4, +\infty) \)

8. \(D_f = \mathbb{R} \)

9. \(D_f = (-\infty, -5] \cup [5, +\infty) \)

10. \(D_f = \left(\frac{7}{2}, 4\right) \cup (4, +\infty) \)

SECCIÓN 4.3 LA FUNCIÓN LINEAL

Encontrar la ecuación de la(s) recta(s) pedida(s) según las condiciones dadas.

1. \(y = -\frac{1}{2} x + \frac{7}{2} \)

2. \(y = -2x + 13 \)

3. \(y = -3x + 13 \)

4. \(y = \frac{9}{11} x + \frac{6}{11} \)

5. Paralela: \(y = \frac{2}{5} x + \frac{17}{5} \) Perpendicular \(y = -\frac{5}{2} x + 15 \)

6. Paralela: \(y = -\frac{1}{2} x + 3 \) Perpendicular \(y = 2x - 2 \)

7. \(y = -\frac{2}{3} x + 3 \)

8. \(y = -\frac{9}{5} x + 5 \)

9. Primera \(y = -\frac{3}{5} x - \frac{4}{5} \) La segunda \(y = -\frac{3}{5} x + 1 \)

10. \(y = -\frac{1}{2} x + \frac{23}{2} \)

Resolver los siguientes problemas

1. \(y = -14x + 4600 \) El costo unitario de producir 300 artículos es $400

2. Debe ser un consumo de 240 minutos. Antes de 240 minutos es más favorable el B, luego de 240 es más favorable el A

3. El gasto es \(y = 3800000 + 250x \). Hacer 150 artículos cuesta $3837500

4. \(y = -\frac{10}{3} x + \frac{11500}{3} \)

5. \(y = 80x \)
SECCIÓN 4.4 LA FUNCIÓN CUADRÁTICA

Encontrar el vértice, interceptos y gráfica de las siguientes funciones cuadráticas (las gráficas las deberá hacer el lector con los datos de cada solución)

1. \(V \left(-\frac{7}{4}, -\frac{73}{8}\right) \) Interceptos x \(\left(-\frac{7-\sqrt{73}}{4}, 0\right), \left(-\frac{7+\sqrt{73}}{4}, 0\right) \) Intercepto y \((0, -3) \)
2. \(V(2, 12) \) Interceptos x \((0,0), (4,0) \) Intercepto y \((0,0) \)
3. \(V \left(\frac{5}{8}, \frac{41}{16}\right) \) Interceptos x \(\left(\frac{5-\sqrt{41}}{8}, 0\right), \left(\frac{5+\sqrt{41}}{8}, 0\right) \) Intercepto y \((0,1) \)
4. \(V \left(\frac{5}{6}, \frac{81}{12}\right) \) Interceptos x \(\left(\frac{5-\sqrt{85}}{6}, 0\right), \left(\frac{5+\sqrt{85}}{6}, 0\right) \) Intercepto y \((0,5) \)
5. \(V \left(-3, -\frac{7}{2}\right) \) Interceptos x \((-3 - \sqrt{7}, 0), (-3 + \sqrt{7}, 0) \) Intercepto y \((0,1) \)
6. \(V(0,5) \) Interceptos x no tiene Intercepto y \((0,5) \)
7. \(V \left(\frac{10}{27}, \frac{511}{243}\right) \) Interceptos x \(\left(\frac{10+2\sqrt{511}}{27}, 0\right), \left(\frac{10-2\sqrt{511}}{27}, 0\right) \) Intercepto y \((0,2) \)
8. \(V(1,1) \) Interceptos x \((0,0), (2,0) \) Intercepto y \((0,0) \)
9. \(V(2,4) \) Interceptos x \((0,0), (4,0) \) Intercepto y \((0,0) \)
10.\(V \left(\frac{13}{40}, \frac{1351}{80}\right) \) Interceptos x no tiene Intercepto y \((0,19) \)

Resolver los siguientes problemas

1. La tarifa deberá ser 22.23 dólares
2. Se necesitan 12 trabajadores.
3. La utilidad máxima es 2800 dólares vendiendo 40 unidades a 320 dólares
4. La función es \(y = -50x^2 + 5250x + 245000 \) y el ingreso máximo será cuando entren 87 u 88 personas
5. La función es \(y = -2x^2 + 200x + 75000 \) la producción máxima será cuando se siembran 50 árboles adicionales.

SECCIÓN 4.5 LA FUNCIÓN EXPONENCIAL

Graficar las siguientes funciones exponenciales (El lector deberá realizar estas gráficas a partir de la tabla de valores)

Resolver los siguientes problemas
1. El monto acumulado es 2643.51; el interés es de 1143.51

2. 10378 individuos

3. Comenzaron 2800 personas en la empresa y a los 5 años habrán 3891 empleados aproximadamente.

SECCIÓN 4.6 LA FUNCIÓN LOGARÍTMICA

Graficar las siguientes funciones logarítmicas (El lector deberá realizar estas gráficas a partir de la tabla de valores)

Resolver los siguientes problemas

1. Se necesitan 15.19 años

2. Se deben ofertar 22.49 unidades

3. 1410.19 dólares el metro cuadrado.
5 CÁLCULO PARA LA ADMINISTRACIÓN

5.1 Límites de funciones

Idea intuitiva de límite: consideremos la función \(f(x) = \frac{x^2-4}{x-2} \). Sabemos, por lo visto en el objeto de aprendizaje anterior, que su dominio son todos los números reales excepto el 2, ya que al evaluar este valor en la función, obtendríamos una división por cero. Sin embargo, la pregunta que podemos hacernos sería ¿Qué ocurre con \(f(x) \) cuando \(x \) está cerca de 2? Para intentar dar respuesta a esta pregunta, construiremos una tabla de valores cercanos a 2, tanto por la derecha como por la izquierda.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.99</th>
<th>1.999</th>
<th>1.9999</th>
<th>2</th>
<th>2.0001</th>
<th>2.001</th>
<th>2.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>3.99</td>
<td>3.999</td>
<td>3.9999</td>
<td>no existe</td>
<td>4.0001</td>
<td>4.001</td>
<td>4.01</td>
</tr>
</tbody>
</table>

Podríamos intuir a partir de la tabla anterior que mientras \(x \) se acerca a 2 tanto por la izquierda como por la derecha, \(f(x) \) se acerca a 4. Vamos a revisar en el plano cartesiano este hecho, considerando la gráfica de la función \(f(x) = \frac{x^2-4}{x-2} \). Veamos

Gráfico 33. Representación gráfica de los acercamientos a \(x = 2 \)
Fuente: propia
En la gráfica anterior vemos a la función con un círculo abierto en el punto (2,4) ya que este no pertenece a la gráfica de la función. Sin embargo, notemos que los acercamientos por derecha y por izquierda a $x = 2$, dan como resultado un acercamiento de la función al valor $y = 4$. Según lo anterior, podemos decir formalmente, que el límite de $f(x)$ cuando x tiende a 2 es 4. Simbólicamente esto se expresa así

$$\lim_{x \to 2} f(x) = 4$$

O sabiendo que $f(x) = \frac{x^2 - 4}{x^2 - 4}$, entonces

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 4} = 4$$

Naturalmente, no necesitamos hacer la tabla de valores ni el razonamiento gráfico anterior para calcular un límite, pues, como veremos a continuación, esto es relativamente fácil, dependiendo, claro está, de la función.

Nota: en cursos de cálculo diferencial se analiza tanto esta idea intuitiva de límite como la definición formal del mismo, llamada también definición épsilon-delta o $\varepsilon - \delta$. En este objeto de aprendizaje nos valdremos del análisis referido arriba, quedándole al lector buscar la definición formal de límite si así lo desea.

Propiedades y cálculo algebraico de límites: con el fin de no tener que calcular límites por medio de tablas o razonamientos gráficos, enunciaremos algunas propiedades importantes de los límites, asumiendo que, dada una función cualquiera, no tenemos la garantía de que su límite exista; más adelante indicaremos las condiciones mínimas para que esto ocurra.

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Límite de la función constante</td>
<td>Si $f(x) = c$ es una función constante, entonces $\lim_{x \to a} c = c$</td>
</tr>
<tr>
<td>Límite de una constante por una función</td>
<td>Si c es una constante, entonces $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$</td>
</tr>
</tbody>
</table>

231
| Límite de la función suma o resta
\[\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \]
Siempre que los límites existan	El límite de una suma o resta de funciones es la suma o la resta de los límites
Límite de la función producto	
\[\lim_{x \to a} [f(x) \times g(x)] = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x) \]	
Siempre que los límites existan	El límite de un producto de funciones es el producto de los límites
Límite de la función cociente	
\[\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to a} f(x) \div \lim_{x \to a} g(x) \]	
Siempre que los límites existan y \(\lim_{x \to a} g(x) \neq 0 \)	El límite de un cociente de funciones es el cociente de los límites, siempre que la función divisor no sea cero
Límite de la función raíz enésima	
\[\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \]
Siempre que el límite exista | El límite de la raíz enésima de una función es la raíz del límite (esta propiedad aplica también para logaritmos) |

Conocidas estas propiedades, basta decir que para calcular algebraicamente un límite, debemos sustituir el valor al cual tiende este. Si el valor encontrado es válido (un número o expresión real), diremos que el límite existe. Veamos algunos ejemplos:

- **Calcular** \(\lim_{x \to 2} (x^2 + 2x + 7) \)

 Solución: vamos a sustituir a \(x \) por 2 en la función para obtener
 \[\lim_{x \to 2} (x^2 + 2x + 7) = (2)^2 + 2(2) + 7 \]
 \[\lim_{x \to 2} (x^2 + 2x + 7) = 4 + 4 + 7 \]
 \[\lim_{x \to 2} (x^2 + 2x + 7) = 15 \]
 Notemos que cuando evaluamos el límite, hemos dejado de escribir la expresión \(\lim_{x \to 2} \).

- **Dada la función** \(g(x) = \frac{x+2}{5x-1} \) **encontrar** \(\lim_{x \to -3} g(x) \) y \(\lim_{x \to 0} g(x) \)
Solución: vamos a sustituir a \(x \) por \(-3\) en primer lugar

\[
\lim_{x \to -3} g(x) = \frac{(-3) + 2}{5(-3) - 1} = \frac{1}{16}
\]

Ahora evaluemos el otro límite

\[
\lim_{x \to 0} g(x) = \frac{(0) + 2}{5(0) - 1} = -2
\]

- Utilizar la propiedad del límite de una raíz para calcular \(\lim_{x \to 7} \sqrt{x + 2} \)

Solución: recordemos que el límite de una raíz es la raíz del límite, por tanto

\[
\lim_{x \to 7} \sqrt{x + 2} = \sqrt{\lim_{x \to 7}(x + 2)} = \sqrt{7 + 2} = 3
\]

- Calcular el valor de \(a \) para que \(\lim_{x \to 2} \frac{2x + a}{5x - 2a} \) sea igual a \(\frac{7}{4} \)

Solución: según las condiciones del ejercicio, debemos encontrar el valor de \(a \) que haga que \(\frac{2(2) + a}{5(2) - 2a} = \frac{7}{4} \)

Por tanto

\[
\frac{4 + a}{10 - 2a} = \frac{7}{4}
\]

\[
4(4 + a) = 7(10 - 2a)
\]

\[
16 + 4a = 70 - 14a
\]

\[
18a = 54
\]

\[
a = 3
\]

La función es finalmente \(f(x) = \frac{2x + 3}{5x - 6} \)
Indeterminación de la forma $\frac{0}{0}$: no siempre que evaluamos un límite obtenemos un número real como respuesta. En algunas ocasiones, aparecen expresiones sobre las cuales no podemos decidir si el límite existe o no. A este tipo de expresiones se les conoce como indeterminaciones. En este texto abordaremos dos tipos de indeterminaciones: la del tipo $\frac{0}{0}$ y la del tipo $\frac{\infty}{\infty}$; sin embargo, el lector podrá encontrar en texto de cálculo diferencial o integral, otras indeterminaciones como 0^0, ∞^∞, $\infty - \infty$ entre otros. Vamos a comenzar con la indeterminación de la forma $\frac{0}{0}$. Consideremos entonces la primera función de este objeto de aprendizaje $f(x) = \frac{x^2 - 4}{x - 2}$ e intentemos calcular algebraicamente $\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$.

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \frac{2^2 - 4}{2 - 2}$$

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \frac{0}{0}$$

Vemos entonces que al tratar de calcular el límite por medio de la sustitución de $x = 2$, obtuvimos una expresión indeterminada. Este tipo de cosas ocurre cuando hay un “factor cero oculto” al interior de la expresión racional; por tanto, debemos eliminar dicho “cero” para que el resultado sea otro. Cuando tenemos polinomios tanto en el numerador como en el denominador, lo primero que debemos intentar es factorizar y simplificar antes de evaluar el límite. Veamos

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2}$$

Simplifiquemos esta expresión

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2)$$

Los que acabamos de hacer fue eliminar el factor $x - 2$ tanto del numerador como del denominador (este era el “Cero oculto” ya que si evaluamos obtenemos $2 - 2 = 0$)

Finalmente
\[
\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 2 + 2
\]
\[
\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4
\]

Obteniendo de nuevo el resultado del primer ejemplo.

- Encontrar (si existe) el límite \(\lim_{m \to 4} \frac{m^2 - 3m - 4}{m^2 + m - 20} \)

Solución: evaluemos el límite para obtener

\[
\lim_{m \to 4} \frac{m^2 - 3m - 4}{m^2 + m - 20} = \frac{(4)^2 - 3(4) - 4}{(4)^2 + (4) - 20} = \frac{0}{0}
\]

Hemos obtenido nuevamente esta forma indeterminada, por lo tanto, intentemos factorizar tanto al numerador como al denominador para obtener

\[
\lim_{m \to 4} \frac{m^2 - 3m - 4}{m^2 + m - 20} = \lim_{m \to 4} \frac{(m - 4)(m + 1)}{(m + 5)(m - 4)}
\]
\[
\lim_{m \to 4} \frac{m^2 - 3m - 4}{m^2 + m - 20} = \lim_{m \to 4} \frac{m + 1}{m + 5}
\]
\[
\lim_{m \to 4} \frac{m^2 - 3m - 4}{m^2 + m - 20} = \frac{4 + 1}{4 + 5} = \frac{5}{9}
\]

- Calcular (si existe) el valor de \(\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 + 6x + 9} \)

Solución: evaluemos el valor al que tiende el límite en la función

\[
\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 + 6x + 9} = \frac{(-3)^2 + 5(-3) + 6}{(-3)^2 + 6(-3) + 9}
\]
\[
\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 + 6x + 9} = \frac{9 - 15 + 6}{-18 + 9} = 0
\]

Factoricemos la expresión para obtener

\[
\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 + 6x + 9} = \lim_{x \to -3} \frac{(x + 3)(x + 2)}{(x + 3)^2}
\]

Simplifiquemos la fracción

\[
\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 + 6x + 9} = \lim_{x \to -3} \frac{x + 2}{x + 3}
\]

Ahora

\[
\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 + 6x + 9} = \frac{-3 + 2}{-3 + 3} = -\frac{1}{0} = \text{no existe}
\]

Dado que la expresión \(-\frac{1}{0}\) carece de sentido, decimos que el límite no existe.

A este último límite se le conoce como límite infinito, ya que su representación gráfica es una curva que crece o decrece indefinidamente cuando se acerca al valor que anula al denominador.

- Calcular \(\lim_{x \to 2} \frac{\sqrt{x+2} - 2}{x - 2}\)

Solución: evaluemos el valor al que tiende el límite en la función

\[
\lim_{x \to 2} \frac{\sqrt{x+2} - 2}{x - 2} = \frac{\sqrt{2+2} - 2}{2 - 2}
\]

\[
\lim_{x \to 2} \frac{\sqrt{x+2} - 2}{x - 2} = \frac{\sqrt{4} - 2}{2 - 2}
\]

\[
\lim_{x \to 2} \frac{\sqrt{x+2} - 2}{x - 2} = \frac{0}{0} = 0
\]
Hemos encontrado otra indeterminación de la forma \(\frac{0}{0} \), pero en este caso, no hay posibilidad de factorizar; sin embargo, para eliminar el factor que está causando la indeterminación, vamos a racionalizar el numerador. Recordemos que cuando la raíz está en un binomio se debe multiplicar por su conjugado. El conjugado de \((\sqrt{x} + 2) - 2\) es \((\sqrt{x} + 2)\)

\[
\lim_{x \to 2} \frac{\sqrt{x} + 2 - 2}{x - 2} = \lim_{x \to 2} \frac{(\sqrt{x} + 2 - 2)(\sqrt{x} + 2 + 2)}{(x - 2)(\sqrt{x} + 2 + 2)}
\]

\[
\lim_{x \to 2} \frac{\sqrt{x} + 2 - 2}{x - 2} = \lim_{x \to 2} \frac{(\sqrt{x} + 2)^2 - (2)^2}{(x - 2)(\sqrt{x} + 2 + 2)}
\]

\[
\lim_{x \to 2} \frac{\sqrt{x} + 2 - 2}{x - 2} = \lim_{x \to 2} \frac{x + 2 - 4}{(x - 2)(\sqrt{x} + 2 + 2)}
\]

\[
\lim_{x \to 2} \frac{\sqrt{x} + 2 - 2}{x - 2} = \lim_{x \to 2} \frac{x - 2}{(x - 2)(\sqrt{x} + 2 + 2)}
\]

Ahora podemos simplificar

\[
\lim_{x \to 2} \frac{\sqrt{x} + 2 - 2}{x - 2} = \lim_{x \to 2} \frac{1}{(\sqrt{x} + 2 + 2)}
\]

\[
\lim_{x \to 2} \frac{\sqrt{x} + 2 - 2}{x - 2} = \frac{1}{(\sqrt{2} + 2 + 2)}
\]

\[
\lim_{x \to 2} \frac{\sqrt{x} + 2 - 2}{x - 2} = \frac{1}{4}
\]

- Calcular \(\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} \)

Solución: evaluemos el valor al que tiende el límite en la función

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \frac{(4)^2 + 9 - 5}{4 - 4} = \frac{16 + 9 - 5}{4 - 4}
\]

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \frac{\sqrt{16 + 9} - 5}{4 - 4}
\]

237
\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \frac{5 - 5}{4 - 4}
\]

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = 0
\]

Racionalicemos esta expresión para poder encontrar un valor diferente a la indeterminación

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \lim_{x \to 4} \frac{(\sqrt{x^2 + 9} - 5)(\sqrt{x^2 + 9} + 5)}{(x - 4)(\sqrt{x^2 + 9} + 5)}
\]

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \lim_{x \to 4} \frac{x^2 + 9 - 25}{(x - 4)(\sqrt{x^2 + 9} + 5)}
\]

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \lim_{x \to 4} \frac{x^2 - 16}{(x - 4)(\sqrt{x^2 + 9} + 5)}
\]

Ahora factoricemos el numerador para eliminar el factor \(x - 4\)

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \lim_{x \to 4} \frac{(x + 4)(x - 4)}{(x - 4)(\sqrt{x^2 + 9} + 5)}
\]

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \lim_{x \to 4} \frac{x + 4}{\sqrt{x^2 + 9} + 5}
\]

Ahora podemos evaluar

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \frac{4 + 4}{\sqrt{(4)^2 + 9} + 5}
\]

\[
\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \frac{8}{10} = \frac{4}{5}
\]

- Calcular \(\lim_{t \to 0} \frac{\sqrt{t + 2} - \sqrt{2}}{t}\)

Solución: evaluemos el valor al que tiende el límite en la función

\[
\lim_{t \to 0} \frac{\sqrt{t + 2} - \sqrt{2}}{t} = \frac{\sqrt{2} - \sqrt{2}}{0}
\]
Racionalicemos al numerador de la fracción

\[
\lim_{t \to 0} \frac{\sqrt{t + 2} - \sqrt{2}}{t} = \lim_{t \to 0} \frac{(\sqrt{t + 2} - \sqrt{2})(\sqrt{t + 2} + \sqrt{2})}{t(\sqrt{t + 2} + \sqrt{2})}
\]

\[
\lim_{t \to 0} \frac{\sqrt{t + 2} - \sqrt{2}}{t} = \lim_{t \to 0} \frac{t + 2 - 2}{t(\sqrt{t + 2} + \sqrt{2})}
\]

\[
\lim_{t \to 0} \frac{\sqrt{t + 2} - \sqrt{2}}{t} = \lim_{t \to 0} \frac{t}{t(\sqrt{t + 2} + \sqrt{2})}
\]

Simplíquemos a \(t\) que era el factor que estaba causando la indeterminación

\[
\lim_{t \to 0} \frac{\sqrt{t + 2} - \sqrt{2}}{t} = \lim_{t \to 0} \frac{1}{\sqrt{t + 2} + \sqrt{2}}
\]

Evaluemos finalmente para obtener

\[
\lim_{t \to 0} \frac{\sqrt{t + 2} - \sqrt{2}}{t} = \frac{1}{\sqrt{2} + \sqrt{2}}
\]

\[
\lim_{t \to 0} \frac{\sqrt{t + 2} - \sqrt{2}}{t} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}
\]

- Calcular \(\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3}\)

Solución: evaluemos el valor al que tiende el límite en la función

\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \frac{\sqrt{1 + 3} - 2}{\sqrt{1^2 + 8} - 3}
\]

\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \frac{2 - 2}{3 - 3} = \frac{0}{0}
\]
Dado que hay raíces tanto en el numerador como en el denominador, racionalicemos cualquiera de los dos (también lo podemos hacer simultáneamente). Comencemos por el numerador.

\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} \cdot \frac{\sqrt{x + 3} + 2}{\sqrt{x + 3} + 2} = \lim_{x \to 1} \frac{(\sqrt{x + 3} - 2)(\sqrt{x + 3} + 2)}{(\sqrt{x^2 + 8} - 3)(\sqrt{x + 3} + 2)}
\]

\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} \cdot \frac{\sqrt{x^2 + 8} + 3}{\sqrt{x^2 + 8} + 3} = \lim_{x \to 1} \frac{(\sqrt{x + 3} - 2)(\sqrt{x^2 + 8} + 3)}{(\sqrt{x^2 + 8} - 3)(\sqrt{x + 3} + 2)}
\]

\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} \cdot \frac{x + 1}{x + 1} = \lim_{x \to 1} \frac{(\sqrt{x + 3} - 2)(x + 1)}{(x + 1)(\sqrt{x + 3} + 2)}
\]

Si volvemos a evaluar, encontraríamos nuevamente la indeterminación, por tanto, es necesario racionalizar en el denominador.

\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \lim_{x \to 1} \frac{(x - 1)(\sqrt{x^2 + 8} + 3)}{x + 1(x - 1)(\sqrt{x + 3} + 2)}
\]

Factoricemos

\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \lim_{x \to 1} \frac{(x - 1)(\sqrt{x^2 + 8} + 3)}{x + 1(x - 1)(\sqrt{x + 3} + 2)}
\]

Simplifiquemos al factor \(x - 1\)

\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \lim_{x \to 1} \frac{\sqrt{x^2 + 8} + 3}{x + 1(x + 1)(\sqrt{x + 3} + 2)}
\]

Ahora evaluemos ya que eliminamos el factor que causaba la indeterminación

\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \frac{\sqrt{1^2 + 8} + 3}{(1 + 1)(\sqrt{1 + 3} + 2)}
\]

240
\[
\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{\sqrt{x^2 + 8} - 3} = \frac{3 + 3}{(2)(4)} = \frac{3}{4}
\]

Límites al infinito: hemos analizado hasta ahora qué pasa con las funciones en las cercanías de un número \(a\) de su dominio. Los límites también nos pueden ayudar a analizar qué pasa con una función cuando \(x\) se hace infinitamente grande o pequeño, es decir, cuando tiende al infinito.

Consideremos la función \(f(x) = \frac{x+3}{2x+1}\). Elaboremos una tabla de valores en la que deduzcamos el valor de \(f(x)\) con \(x\) tendiendo al infinito.

<table>
<thead>
<tr>
<th>(x)</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>100000</th>
<th>1000000</th>
<th>10000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>0.6190</td>
<td>0.5124</td>
<td>0.50124</td>
<td>0.500124</td>
<td>0.5000124</td>
<td>0.50000124</td>
<td>0.500000124</td>
</tr>
</tbody>
</table>

Pareciera que conforme \(x\) se hace infinitamente grande, el valor de \(f(x)\) tiende a 0.5, es decir, a \(\frac{1}{2}\). De ese modo, podemos decir que el límite de \(f(x)\), cuando \(x\) tiende al infinito es \(\frac{1}{2}\).

Simbólicamente, decimos que \(\lim_{x \to \infty} \frac{x+3}{2x+1} = \frac{1}{2}\).

Antes de intentar encontrar el valor de un límite al infinito, debemos tener presentes las propiedades de la expresión \(\infty\) el cual matemáticamente no representa un valor numérico, sino la idea de crecimiento o decrecimiento continuo. Las siguientes propiedades aplican para un número \(c \in \mathbb{R}\)

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante más infinito</td>
<td>(\infty + c = \infty) La suma de una constante con el infinito da como resultado el infinito</td>
</tr>
<tr>
<td>Constante por infinito</td>
<td>(\infty \times c = \infty) El producto de una constante con el infinito da como resultado el infinito</td>
</tr>
<tr>
<td>Infinito dividido constante</td>
<td>(\frac{\infty}{c} = \infty) El cociente del infinito entre una constante es el infinito</td>
</tr>
<tr>
<td>Suma de infinitos</td>
<td>(\infty + \infty = \infty) La suma de dos o más infinitos da como resultado el infinito</td>
</tr>
<tr>
<td>Suma de infinitos</td>
<td>(\infty - \infty no está definido) La expresión (\infty - \infty) no tiene sentido</td>
</tr>
</tbody>
</table>
Si intentáramos evaluar este límite, reemplazando al infinito en la función, obtendríamos lo siguiente:

\[
\lim_{x \to \infty} \frac{x + 3}{2x + 1} = \frac{\infty + 3}{2(\infty) + 1} \\
\lim_{x \to \infty} \frac{x + 3}{2x + 1} = \frac{\infty}{\infty}
\]

El resultado que obtuvimos se conoce como \textit{indeterminación de la forma} \(\frac{\infty}{\infty}\), lo cual indica que evaluar no es lo más recomendable de entrada para encontrar el valor de un límite al infinito.

Para poder calcular límites al infinito, necesitamos saber qué pasa con funciones del tipo \(f(x) = \frac{a}{x^k}\) con \(x \neq 0\) \(a \neq 0\) y \(k \in \mathbb{R}^+\). Consideremos por ejemplo la función \(f(x) = \frac{3}{x^4}\), y hagamos nuevamente una tabla de valores en la que \(x\) tome valores muy grandes.

<table>
<thead>
<tr>
<th>(x)</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>0.03</td>
<td>0.0003</td>
<td>0.000003</td>
<td>0.00000003</td>
<td>0.0000000003</td>
</tr>
</tbody>
</table>

Vemos que conforme \(x\) tiende al infinito, el valor de esta fracción tiende a cero. De esta manera, podemos enunciar (sin demostración), la siguiente propiedad de los límites

\[
\lim_{x \to \infty} \frac{a}{x^k} = 0
\]

Es decir, cuando en una fracción \(x\) está solo en el denominador y tiende este al infinito, toda la fracción tiende a cero.

Para encontrar un límite al infinito cuando la función es de tipo racional o irracional fraccionaria, los pasos a seguir son los siguientes:

1. Buscamos cuál es la mayor potencia que se encuentra en toda la fracción
2. Dividimos cada término de la fracción entre esta mayor potencia y simplificamos.
3. Recordemos que \(\lim_{x \to \infty} \frac{a}{x^k} = 0\), por tanto, cuando aparezca una fracción cuyo numerador sea un número real y su denominador sea \(x\) elevado a una potencia positiva, cambiamos dicha fracción por cero.
- Encontrar el valor de \(\lim_{x \to \infty} \frac{x + 3}{2x + 1} \)

Solución: la mayor potencia que se encuentra en toda la expresión es \(x \). Por lo tanto, dividamos cada término por esta expresión algebraica.

\[
\lim_{x \to \infty} \frac{x + 3}{2x + 1} = \lim_{x \to \infty} \frac{x}{2x} + \frac{3}{1} = \frac{1}{2} + 0 = \frac{1}{2}
\]

Ahora, al evaluar el límite, recordemos que \(\lim_{x \to \infty} \frac{a}{x^k} = 0 \), por lo tanto

\[
\lim_{x \to \infty} \frac{x + 3}{2x + 1} = \frac{1 + 0}{2 + 0} = \frac{1}{2}
\]

Que era el resultado observado anteriormente

- Encontrar el valor de \(\lim_{x \to \infty} \frac{5x^2 - 7x^6 + 8x^3 + 2}{x^4 + 5x^5 - 3x^2 + 7x - 1} \)

Solución: la mayor potencia que se encuentra en toda la expresión es \(x^6 \). Por lo tanto, dividamos cada término por esta expresión algebraica.

\[
\lim_{x \to \infty} \frac{5x^2 - 7x^6 + 8x^3 + 2}{x^4 + 5x^5 - 3x^2 + 7x - 1} = \lim_{x \to \infty} \frac{\frac{5x^2}{x^6} - \frac{7x^6}{x^6} + \frac{8x^3}{x^6} + \frac{2}{x^6}}{\frac{x^4}{x^6} + \frac{5x^5}{x^6} - \frac{3x^2}{x^6} + \frac{7x}{x^6} - \frac{1}{x^6}}
\]

\[
\lim_{x \to \infty} \frac{5x^2 - 7x^6 + 8x^3 + 2}{x^4 + 5x^5 - 3x^2 + 7x - 1} = \lim_{x \to \infty} \frac{\frac{5}{x^4} - \frac{7}{x^3} + \frac{8}{x^2} + \frac{2}{x}}{\frac{1}{x^2} + \frac{5}{x} - \frac{3}{x^4} + \frac{7}{x^5} - \frac{1}{x^6}}
\]

\[
\lim_{x \to \infty} \frac{5x^2 - 7x^6 + 8x^3 + 2}{x^4 + 5x^5 - 3x^2 + 7x - 1} = \frac{0 - 7 + 0 + 0}{0 + 0 - 0 + 0 - 0} = -\frac{7}{0}
\]

Dado que \(-\frac{7}{0}\) es una expresión que no tiene sentido, diremos que el límite no existe.
- Encontrar el valor de \(\lim_{x \to \infty} \frac{-7x^5 + 10x^4 + 5x^3 + 2x + 9}{8x^7 - 9x^6 - 12x^2 + 8} \)

Solución: la mayor potencia que se encuentra en toda la expresión es \(x^7 \). Por lo tanto, dividamos cada término por esta expresión algebraica.

\[
\lim_{x \to \infty} \frac{-7x^5 + 10x^4 + 5x^3 + 2x + 9}{8x^7 - 9x^6 - 12x^2 + 8} = \lim_{x \to \infty} \frac{-7 + \frac{10}{x} + \frac{5}{x^2} + \frac{2}{x^3} + \frac{9}{x^7}}{8 - \frac{9}{x} - \frac{12}{x^2} + \frac{8}{x^7}}
\]

\[
\lim_{x \to \infty} \frac{-7x^5 + 10x^4 + 5x^3 + 2x + 9}{8x^7 - 9x^6 - 12x^2 + 8} = \lim_{x \to \infty} \frac{0 + 0 + 0 + 0 + 0}{8 - 0 - 0 + 0} = 0 = 0
\]

- Encontrar el valor de \(\lim_{m \to \infty} \frac{5m^3 - 8m^2 + 8m + 10}{\sqrt{21 - 12m^2 + 16m^6 + 7m^3}} \)

Solución: cuando aparece una expresión irracional en la fracción, como en este caso, debemos analizar cuál es la mayor potencia obtenida en esta raíz si la extrajéramos, es decir, en el denominador, la mayor potencia es \(\sqrt{m^6} = m^3 \). En toda la expresión, la mayor potencia es finalmente \(m^3 \)

\[
\lim_{m \to \infty} \frac{5m^3 - 8m^2 + 8m + 10}{\sqrt{21 - 12m^2 + 16m^6 + 7m^3}} = \lim_{m \to \infty} \frac{\frac{5m^3}{m^3} - \frac{8m^2}{m^3} + \frac{8m}{m^3} + \frac{10}{m^3}}{\sqrt{\frac{21}{m^6} - \frac{12m^2}{m^6} + \frac{16m^6}{m^6} + \frac{7m^3}{m^6}}}
\]

Para poder analizar a la expresión \(m^3 \) dentro de la raíz, debemos ingresarla a esta elevándola al índice de la raíz, es decir, al cuadrado. Lo que queremos decir es que \(m^3 = \sqrt{m^6} \)

\[
\lim_{m \to \infty} \frac{5m^3 - 8m^2 + 8m + 10}{\sqrt{21 - 12m^2 + 16m^6 + 7m^3}} = \lim_{m \to \infty} \frac{\frac{5m^3}{m^3} - \frac{8m^2}{m^3} + \frac{8m}{m^3} + \frac{10}{m^3}}{\sqrt{\frac{21}{m^6} - \frac{12m^2}{m^6} + \frac{16m^6}{m^6} + \frac{7m^3}{m^6}}}
\]
Ahora podemos simplificar en toda la expresión

\[
\lim_{m \to \infty} \frac{5m^3 - 8m^2 + 8m + 10}{\sqrt{21 - 12m^2 + 16m^6 + 7m^3}} = \lim_{m \to \infty} \frac{5 - \frac{8}{m} + \frac{8}{m^2} + \frac{10}{m^3}}{\sqrt{21 - \frac{12}{m^4} + 16 + \frac{7}{m^3}}}
\]

\[
\lim_{m \to \infty} \frac{5m^3 - 8m^2 + 8m + 10}{\sqrt{21 - 12m^2 + 16m^6 + 7m^3}} = \frac{5 - 0 + 0}{\sqrt{0 - 0 + 16}} = \frac{5}{4}
\]

- Encontrar el valor de \(\lim_{p \to \infty} \frac{\sqrt[3]{5p^4 - 8p^9 + 24p^5 - 4}}{\sqrt[3]{14p - 49p^2 + 16p^4 - 8p^3}}\)

Solución: la mayor potencia en el numerador es \(\sqrt[3]{p^9} = p^3\), mientras que la mayor potencia en el denominador es \(\sqrt[3]{p^4} = p^2\) por lo tanto, la mayor potencia es \(p^3\)

\[
\lim_{p \to \infty} \frac{\sqrt[3]{5p^4 - 8p^9 + 24p^5 - 4}}{\sqrt[3]{14p - 49p^2 + 16p^4 - 8p^3}} = \lim_{p \to \infty} \frac{\sqrt[3]{5p^4 - 8p^9 + 24p^5 - 4}}{p^3} \frac{p^3}{p^3} = \lim_{p \to \infty} \frac{\sqrt[3]{5p^4 - 8p^9 + 24p^5 - 4}}{\sqrt[3]{14p^6 - 49p^2 + 16p^4 - 8p^3}}
\]

Para ingresar a la expresión \(p^3\) a la raíz en el numerador, elevamos a la 3, mientras que para ingresarla a la raíz del denominador, elevamos al cuadrado.

\[
\lim_{p \to \infty} \frac{\sqrt[3]{5p^4 - 8p^9 + 24p^5 - 4}}{\sqrt[3]{14p - 49p^2 + 16p^4 - 8p^3}} = \lim_{p \to \infty} \frac{\sqrt[3]{5p^4 - 8p^9 + 24p^5 - 4}}{\sqrt[3]{14p^6 - 49p^2 + 16p^4 - 8p^3}}
\]

Por tanto,

\[
\lim_{p \to \infty} \frac{\sqrt[3]{5p^4 - 8p^9 + 24p^5 - 4}}{\sqrt[3]{14p - 49p^2 + 16p^4 - 8p^3}} = \frac{\sqrt[3]{0 - 8 + 0}}{\sqrt[3]{0 - 0 + 0}} = \frac{\sqrt[3]{-8}}{\sqrt[3]{0}} = \frac{-2}{0}
\]

El límite finalmente no existe
Funciones por tramos y límites laterales: en la clasificación que hacíamos de las funciones en el cuarto objeto de aprendizaje, mencionamos que la función por tramos utiliza varios tipos de funciones para determinar el comportamiento de la variable en diferentes intervalos de números reales y que por lo general estas funciones se definen por partes y en cada una de ellas, se utiliza un tipo diferente de función. Vamos a mostrar este tipo de funciones de manera gráfica.

Consideremos la función

\[
f(x) = \begin{cases}
2x + 2 & \text{si } x < 1 \\
-x^2 - 2x + 6 & \text{si } 1 \leq x \leq 2 \\
-4x + 14 & \text{si } x > 2
\end{cases}
\]

Al momento de hacer la tabla de valores debemos fijarnos en qué tramo de la función debemos reemplazar el valor de \(x \), ya que, como se puede observar, los tres tramos son algebraicamente diferentes. Por ejemplo, si queremos saber el valor de \(f(0) \) debemos ubicar el intervalo donde se encuentra este, es decir, en \(x < 1 \) y por tanto, sustituimos este valor en \(2x + 2 \). Si queremos saber el valor de \(f(2) \) sustituimos en \(-x^2 - 2x + 6 \) y para conocer el valor de \(f(10) \) reemplazamos en \(-4x + 14 \). Elaboremos la respectiva tabla de valores

<table>
<thead>
<tr>
<th>(x)</th>
<th>(2x + 2)</th>
<th>(-x^2 - 2x + 6)</th>
<th>(-4x + 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(f(x))</td>
<td>(f(x))</td>
<td>(f(x))</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>-6</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-6</td>
<td></td>
</tr>
</tbody>
</table>

Los extremos de los intervalos se han evaluado en la función que les corresponde, por ejemplo, a 1 y a 2 los evaluamos en \(-x^2 - 2x + 6 \). La gráfica de esta función por tramos es la siguiente

![Gráfico 34. Representación gráfica de la función](image)

Gráfico 34. Representación gráfica de la función

\[
f(x) = \begin{cases}
2x + 2 & \text{si } x < 1 \\
-x^2 - 2x + 6 & \text{si } 1 \leq x \leq 2 \\
-4x + 14 & \text{si } x > 2
\end{cases}
\]

Fuente: propia
Gráficamente notamos que en el primer tramo de la izquierda, su extremo tiene un círculo sin relleno oscuro, ya que el intervalo es abierto. En el tramo central, correspondiente a una parábola, los extremos son círculos rellenos y finalmente, el tramo de la derecha tiene su extremo cerrado, pero esto se debe a que su punto inicial es infinitamente cercano al extremo del tramo anterior.

Si los dos intervalos fueran cerrados, esto no representaría una función, ya que si evaluamos a $x = 2$ en la función, obtendríamos dos intervalos superpuestos.

Ahora la pregunta que nos podemos hacer para efectos de este objeto de aprendizaje es ¿Qué ocurre con f en los valores cercanos a $x = 1$?

En la anterior gráfica notamos que, mientras x se acerca a 1 por la izquierda, f se acerca a 4, y por otro lado, mientras x se acerca a 1 por la izquierda, f se acerca a 5. Simbólicamente, diremos que

$$\lim_{x \to 1^-} f(x) = 4$$

Y además

$$\lim_{x \to 1^+} f(x) = 5$$

Los cuales son los límites laterales de $f(x)$ cuando x tiende a 1, tanto por izquierda, como por derecha.

El símbolo 1^- significa el acercamiento a 1 por la izquierda, mientras que 1^+ significa acercamiento por la derecha.

La siguiente propiedad, que enunciaremos sin demostración, establece la condición necesaria para que un límite respecto a un valor x del domino de una función $f(x)$ exista.

$$\lim_{x \to a} f(x) \text{ existe si y solo si } \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$$

Lo anterior implica que, aunque $f(a)$ no exista, el límite sí existe siempre y cuando los acercamientos laterales sean iguales.
• Considere nuevamente \(f(x) = \begin{cases}
2x + 2 & \text{si } x < 1 \\
x^2 - 2x + 6 & \text{si } 1 \leq x \leq 2 \\
-4x + 14 & \text{si } x > 2
\end{cases} \) y calcule \(\lim_{x \to 2} f(x) \)

Solución: dado que \(x = 2 \) es un extremo de dos intervalos, debemos calcular los límites laterales con el fin de compararlos y determinar si estos son iguales. Comencemos por la izquierda. A la izquierda de \(x = 2 \) está la función \(x^2 - 2x + 6 \), por lo tanto

\[
\lim_{x \to 2^-} f(x) = \lim_{x \to 2} (x^2 - 2x + 6) = 4 - 4 + 6 = 6
\]

Ahora calculemos el límite por la derecha. A este lado de \(x = 2 \) se encuentra la función \(-4x + 14\). Veamos

\[
\lim_{x \to 2^+} f(x) = \lim_{x \to 2} (-4x + 14) = -8 + 14 = 6
\]

Dado que \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) \), podemos decir que el límite existe y es igual a 6.

• Sea \(g(x) = \begin{cases}
-4x^2 + 3 & \text{si } x < -1 \\
2x + 1 & \text{si } -1 \leq x \leq 1 \\
x^2 - 4 & \text{si } x > 1
\end{cases} \) y calcule \(\lim_{x \to -1} g(x) \) y \(\lim_{x \to 1} g(x) \)

Solución: comencemos con el valor \(x = -1 \) y calculemos los límites laterales

\[
\lim_{x \to -1^-} g(x) = \lim_{x \to -1} (-4x^2 + 3) = -4(-1)^2 + 3 = 1
\]

\[
\lim_{x \to -1^+} g(x) = \lim_{x \to -1} (2x + 1) = -1
\]

\[
\lim_{x \to 1^-} g(x) = \lim_{x \to 1} (-4x^2 + 3) = -4 + 3 = -1
\]

\[
\lim_{x \to 1^+} g(x) = \lim_{x \to 1} (2x + 1) = 3
\]

Calculemos ahora el límite por la derecha
\[\lim_{x \to -1^+} g(x) = \lim_{x \to 1} (2x + 1) \]
\[\lim_{x \to -1^+} g(x) = 2(-1) + 1 \]
\[\lim_{x \to -1^+} g(x) = -2 + 1 \]
\[\lim_{x \to -1^+} g(x) = -1 \]

Dado que \(\lim_{x \to -1^-} g(x) = \lim_{x \to -1^+} g(x) \) decimos que el límite existe y es -1

Ahora calculemos el límite para \(x = 1 \)
\[\lim_{x \to 1^-} g(x) = \lim_{x \to 1} (2x + 1) \]
\[\lim_{x \to 1^-} g(x) = 2(1) + 1 \]
\[\lim_{x \to 1^-} g(x) = 2 + 1 \]
\[\lim_{x \to 1^-} g(x) = 3 \]

Calculemos ahora el límite por la derecha
\[\lim_{x \to 1^+} g(x) = \lim_{x \to 1} (x^2 - 4) \]
\[\lim_{x \to 1^+} g(x) = (1)^2 - 4 \]
\[\lim_{x \to 1^+} g(x) = 1 - 4 \]
\[\lim_{x \to 1^+} g(x) = -3 \]

Como \(\lim_{x \to 1^-} g(x) \neq \lim_{x \to 1^+} g(x) \) el límite no existe
EJERCICIOS PROPUESTOS:

Encontrar el valor (si existe) de los siguientes límites

1. \(\lim_{x \to 2} (5x^2 + 8x - 1) \)

2. \(\lim_{m \to 3} \frac{5m-1}{3-4m} \)

3. \(\lim_{x \to -1} \frac{2x^3+5}{x+1} \)

4. \(\lim_{a \to 5} \left(\frac{\sqrt{5a+a^2}}{7} \right) \)

5. \(\lim_{r \to 5} \frac{2r+7}{r^2-25} \)

6. \(\lim_{k \to 9} (\sqrt{k} + 5k - 1) \)

7. \(\lim_{b \to 0} \frac{2b^3+5b^2+1}{b^2+b-1} \)

8. \(\lim_{y \to 5} \frac{y^2-25}{\sqrt{20y}-36} \)

9. \(\lim_{j \to 7} \left(\frac{5j^3+4j-1}{\sqrt{7j}+13} \right) \)

10. \(\lim_{d \to 0} \frac{d-\sqrt{8d}}{d+2} \)

11. \(\lim_{g \to 5} \frac{\sqrt{g+4}-3}{\sqrt{g+4}-1} \)

12. \(\lim_{x \to 3} \frac{x^2-9}{x^2-x-6} \)

13. \(\lim_{m \to 8} \frac{\sqrt{m^2+36}-10}{\sqrt{9m+28}-10} \)

14. \(\lim_{p \to 0} \frac{\sqrt{p^2+4}-2}{2-\sqrt{p^2+2p+4}} \)

15. \(\lim_{t \to 20} \frac{20-\sqrt{5t+300}}{7-\sqrt{2t+9}} \)

16. \(\lim_{h \to 9} \frac{2h^2-162}{h^2-18h+81} \)

17. \(\lim_{d \to 12} \frac{\sqrt{5d+4}-8}{\sqrt{3d}-6} \)

18. \(\lim_{w \to 5} \frac{6w^2+9w-105}{7w^2+9w-130} \)

19. \(\lim_{a \to 1} \frac{a-\sqrt{a}}{a^3-a} \)

20. \(\lim_{h \to 3} \frac{h^2-9}{2h^2+7h+3} \)

21. \(\lim_{x \to \infty} \frac{16x^6+7x-1}{8x^2+5x^3-10+x} \)

22. \(\lim_{x \to \infty} \frac{6x^4+7x^3+15x-81}{3x^5+10x^2+5x+1} \)

23. \(\lim_{x \to \infty} \frac{3\sqrt{14x^4+27x^6+10x-2}}{\sqrt{36x^8-15x^6+50x-13}} \)

24. \(\lim_{x \to \infty} \frac{2x^4-4\sqrt{144x^8+16x^{10}-8}}{5x^6+\sqrt{3x^{10}+14x^7+144x+1}} \)

25. Sea \(f(x) = \begin{cases} \sqrt{5x-x^2} & si \; x < 0 \\ x^2 & si \; 0 \leq x < 2 \\ x^2 + 5x + 6 & si \; x \geq 2 \end{cases} \)

Calcular \(\lim_{x \to 0} f(x) \) y \(\lim_{x \to 2} f(x) \)

26. \(f(x) = \begin{cases} 5x - 1 & si \; x < -2 \\ 4 & si \; x = -2 \\ x^2 - 1 & si \; -2 < x \leq 5 \\ 20 & si \; x > 5 \end{cases} \)

Calcular \(\lim_{x \to -2} f(x) \) y \(\lim_{x \to 5} f(x) \)

250
5.2 Continuidad de funciones

Idea intuitiva de continuidad: cuando decimos que algo es continuo, por lo general nos referimos a algo que “no tiene interrupción”, es decir, que no presenta “saltos” en su estructura y por tanto, que no hay necesidad de “alzar el lápiz” al momento de representarlo gráficamente. Lo anterior, nos lleva a considerar la idea de límite como una poderosa herramienta para abordar el concepto de continuidad respecto a un punto perteneciente al dominio de una función. Consideremos la función }\[f(x) = \begin{cases}
2x - 1 & \text{si } x \leq 2 \\
x^2 - 1 & \text{si } 2 < x < 3 \\
7 & \text{si } x = 3 \\
3x - 1 & \text{si } x > 3
\end{cases} \]

Y analicemos gráficamente si es continua en }\[x = 2 \]

Gráfico 35. Representación gráfica de la función }\[f(x) = \begin{cases}
2x - 1 & \text{si } x \leq 2 \\
x^2 - 1 & \text{si } 2 < x < 3 \\
7 & \text{si } x = 3 \\
3x - 1 & \text{si } x > 3
\end{cases} \]

Fuente: propia
Si vemos detenidamente la gráfica, notaremos que cuando nos acercamos por los dos lados al punto \(x = 2 \), la gráfica se acerca al mismo valor de \(y \); además, este valor de \(y \) es el mismo valor de \(f(2) \), lo cual muestra que no hay necesidad de “levantar el lápiz” cuando hacemos la gráfica en torno a \(x = 2 \) (aunque la forma de la gráfica sea diferente en cada tramo).

Por otro lado, notemos lo que pasa cuando nos acercamos a \(x = 3 \) por ambos lados: los dos acercamientos dan como resultado \(y = 8 \), mientras que el punto que le corresponde a \(x = 3 \) es \(y = 7 \). Esto último indica que, si quisiéramos graficar esta función a mano, tendríamos que “levantar el lápiz” para poder marcar el punto \((3,7)\) y continuar desde \(y = 8 \), es decir, aquí la función no sería continua. Bajo estos dos análisis, daremos a conocer las condiciones básicas para que una función sea continua en un punto.

Sea \(f(x) \) una función de variable real y \(x = a \) un número real de su dominio. Decimos que \(f(x) \) es continua en \(x = a \) si y solo si se cumplen las tres siguientes condiciones:

1. \(f(a) \) existe
2. \(\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \) es decir, que \(\lim_{x \to a} f(x) \) exista
3. \(f(a) = \lim_{x \to a} f(x) \)

Si se cumplen las tres condiciones anteriores, decimos que \(f(x) \) es continua en \(x = a \). En caso de faltar al menos una de las condiciones, \(f(x) \) es discontinua. Analicemos lo que quiere decir cada condición. La primera indica que la función debe tener un punto en \(x = a \); la segunda indica que el límite debe existir, es decir, que los acercamientos laterales a \(x = a \) sean iguales y, finalmente, que los acercamientos sean iguales también a la función evaluada en \(x = a \).

Con base en las tres condiciones anteriores, podemos percibir que no todas las funciones tienen el mismo tipo de discontinuidad; es decir, es posible que una función si cumpla la condición i y ii, pero no la iii, o puede cumplir la i pero no la ii. De esta manera, diremos que una discontinuidad es evitable cuando \(x = a \) tiene imagen (se cumple la condición i), el límite existe (se cumple la condición ii), pero no son iguales entre ellos (no se cumple la condición iii). Por otro lado, una discontinuidad es inevitable o esencial si se cumple la condición i, pero los límites laterales no son iguales, lo cual implica que el límite no existe. La siguiente gráfica mostrará una función \(h(x) \) con los dos tipos de discontinuidad.
En el gráfico apreciamos que la discontinuidad en $x = 2$ es evitable, ya que los límites son iguales a 3, pero $h(2) = 1$. Por otro lado, notemos que la discontinuidad en $x = 3$ es inevitable, ya que, aunque $h(3) = 8$, uno de los límites laterales tiende a 5, es decir, el límite no existe. ¿Cómo hacemos que la función sea continua en $x = 2$? Basta definir otra función $g(x)$ que tenga el punto $(2,3)$ y de esta manera puedan coincidir con el límite que sí existía. Veamos la gráfica
Realicemos algunos ejemplos

- Considere nuevamente la función \(f(x) = \begin{cases}
2x - 1 & \text{si } x \leq 2 \\
x^2 - 1 & \text{si } 2 < x < 3 \\
7 & \text{si } x = 3 \\
3x - 1 & \text{si } x > 3
\end{cases} \)

Y verifiquemos la continuidad en \(x = 2 \).

Solución: vamos a verificar el cumplimiento de la condiciones

1. \(f(2) = 2(2) - 1 \)
\(f(2) = 3 \) existe Por tanto se cumple la condición i

2. \(\lim_{x \to 2^-} f(x) = 2(2) - 1 \)
\(\lim_{x \to 2^-} f(x) = 3 \)
\(\lim_{x \to 2^+} f(x) = (2)^2 - 1 \)
\(\lim_{x \to 2^+} f(x) = 3 \)
Dado que \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) \) existe, también se cumple la condición ii
Finalmente, \(f(2) = 3 = \lim_{x \to 2} f(x) \) lo cual cumple la condición iii.

Lo anterior permite concluir que \(f(x) \) es continua en \(x = 2 \)

- Analicemos \(f(x) = \begin{cases}
2x - 1 & \text{si } x \leq 2 \\
x^2 - 1 & \text{si } 2 < x < 3 \\
7 & \text{si } x = 3 \\
3x - 1 & \text{si } x > 3
\end{cases} \) es continua en \(x = 3 \)

Solución: vamos a verificar el cumplimiento de la condiciones

1. \(f(3) = 7 \) existe

2. \(\lim_{x \to 3^-} f(x) = (3)^2 - 1 \)
\(\lim_{x \to 3^-} f(x) = 8 \)
\(\lim_{x \to 3^+} f(x) = 3(3) - 1 \)
\(\lim_{x \to 3^+} f(x) = 8 \)
Dado que \(\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) \) existe, también se cumple la condición ii
Finalmente, \(f(3) \neq \lim_{x \to 3} f(x) \) lo cual no cumple la condición iii.
Lo anterior permite concluir que $f(x)$ es discontinua en $x = 3$ pero como el límite sí existe, basta crear una nueva función que sí sea continua. Llamemos a esta función $j(x)$

$$j(x) = \begin{cases} 2x - 1 & \text{si } x \leq 2 \\ x^2 - 1 & \text{si } 2 < x < 3 \\ 8 & \text{si } x = 3 \\ 3x - 1 & \text{si } x > 3 \end{cases}$$

- Considere la función $f(x) = \begin{cases} 3x - x^2 & \text{si } x \leq -1 \\ 5x + 7 & \text{si } -1 < x \leq 4 \\ 3x^2 - 4x - 5 & \text{si } x > 4 \end{cases}$ y analice la continuidad en $x = -1$ y en $x = 4$.

Solución: comencemos con $x = -1$

1. $f(-1) = 3(-1) - (-1)^2$
 $f(-1) = -3 - 1$
 $f(-1) = -4$ existe

2. \[\lim_{x \to -1^-} f(x) = 3(-1) - (-1)^2\]
 \[\lim_{x \to -1^-} f(x) = -4\]
 \[\lim_{x \to -1^+} f(x) = 5(-1) + 7\]
 \[\lim_{x \to -1^+} f(x) = 2\]
 Dado que $\lim_{x \to -3^-} f(x) \neq \lim_{x \to -3^+} f(x)$ el límite no existe, por lo que no se cumple la condición ii y la función es discontinua en $x = -1$

Ahora analicemos a $x = 4$

1. $f(4) = 5(4) + 7$
 $f(4) = 20 + 7$
 $f(4) = 27$ existe

2. \[\lim_{x \to 4^-} f(x) = 5(4) + 7\]
 \[\lim_{x \to 4^-} f(x) = 27\]
 \[\lim_{x \to 4^+} f(x) = 3(4)^2 - 4(4) - 5\]
 \[\lim_{x \to 4^+} f(x) = 48 - 16 - 5\]
 \[\lim_{x \to 4^+} f(x) = 27\]
Dado que \(\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) \) el límite existe, por lo que se cumple la condición ii

\[iii. f(4) = 27 = \lim_{x \to 4} f(x) \] Lo que indica que la condición iii se cumple.

Finalmente, la función es continua en \(x = 4 \). Como la discontinuidad en \(x = -1 \) fue por no cumplirse la condición ii, esta discontinuidad es inevitable.

EJERCICIOS PROPUESTOS:

Determinar si las siguientes funciones son continuas o discontinuas en los puntos indicados. En caso de que la discontinuidad sea evitable, defina la nueva función continua

1. \(f(x) = \begin{cases}
 x^2 - 1 & \text{si } x \leq -5 \\
 x^2 + 5x + 24 & \text{si } -5 < x \leq 0 \\
 x^3 - 1 & \text{si } x > 0
 \end{cases} \) \(en \ x = -5 \) y \(en \ x = 0 \)

2. \(f(x) = \begin{cases}
 3x^2 - x + 2 & \text{si } x < -2 \\
 20 & \text{si } x = -2 \\
 4x^2 & \text{si } -2 < x < 3 \\
 30 & \text{si } x = 3 \\
 x^2 + 3x + 18 & \text{si } x > 3
 \end{cases} \) \(en \ x = -2 \) y \(en \ x = 3 \)

3. \(f(x) = \begin{cases}
 \sqrt{2x + 3} & \text{si } x < 0 \\
 4 & \text{si } x = 0 \\
 4\sqrt[3]{3x + 5} & \text{si } 0 < x < 2 \\
 4\sqrt[5]{5} & \text{si } x = 2 \\
 2\sqrt[3]{5x^2} & \text{si } x > 2
 \end{cases} \) \(en \ x = 0 \) y \(en \ x = 2 \)

4. Utilice los conceptos de continuidad y límite para encontrar el valor de \(a \) y de \(b \) que hagan que \(f(x) = \begin{cases}
 2x - 1 & \text{si } x \leq -4 \\
 ax + b & \text{si } -4 < x \leq 1 \\
 x^2 + x - 6 & \text{si } x > 1
 \end{cases} \) sea continua

5. Utilice los conceptos de continuidad y límite para encontrar el valor de \(a \) y de \(b \) que hagan que \(f(x) = \begin{cases}
 ax^2 + b & \text{si } x \leq 1 \\
 3x + 2 & \text{si } 1 < x \leq 3 \\
 \frac{x^3}{a} + b & \text{si } x > 3
 \end{cases} \) sea continua
5.3 Derivada de funciones

Idea de razón de cambio entre dos variables: cotidianamente observamos cambios de una variable, pero lo que a veces se nos hace imperceptible es que una variable cambie mientras otra relacionada con ella también lo hace. Consideremos por ejemplo la distancia que recorre un auto: mientras la distancia va aumentando, también lo hace el tiempo, o la velocidad, o la aceleración; podríamos intuir entonces, que la distancia recorrida por un móvil en un tiempo \(t \) depende de cómo va cambiando este tiempo. De esta última idea surgió el concepto de velocidad, como el cociente o razón entre la distancia recorrida por un móvil durante un tiempo determinado. Podríamos encontrar diversos ritmos de cambio entre variables, tanto en la física y las demás ciencias exactas, como en ciencias económicas y disciplinas administrativas. En esta sección abordaremos de una manera general la idea de razón de cambio con la ayuda de un importante concepto matemático llamado derivada. Vamos a conceptualizar este término a partir de una función \(f(x) \).

Sea \(y = f(x) \) una función de variable real. La derivada de esta función respecto a \(x \) (simbolizada como \(y' \) o \(\frac{df(x)}{dx} \) o como \(\frac{dy}{dx} \)) se define como el siguiente límite:

\[
y' = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

El límite anterior tiene los siguientes elementos

\(f(x + h) - f(x) \) Es el cambio de la función
\(h \) Es el incremento de \(x \).

El límite quiere decir que nuestro interés es saber qué pasa con el ritmo de cambio de una función cuando el incremento tiende a cero.

Nota: en pocas palabras, la derivada de una función es otra función que resulta de evaluar el límite \(\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \). En adelante utilizaremos este límite sólo para los primeros ejemplos, pero el lector podrá en cualquier momento determinar la derivada de una función utilizando el límite.

Los siguientes ejemplos utilizarán la derivada como límite para hacer los cálculos.
• Sea \(f(x) = x^2 + 5x + 6 \). Utilice el límite anterior para calcular la derivada de \(f(x) \) (simbolizada en este caso \(f'(x) \))

Solución: como \(f(x) = x^2 + 5x + 6 \), entonces \(f(x + h) = (x + h)^2 + 5(x + h) + 6 \), es decir, para encontrar \(f(x + h) \) basta reemplazar en la función \(x \) por \(x + h \).

Veamos

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

\[
f'(x) = \lim_{h \to 0} \frac{[(x + h)^2 + 5(x + h) + 6] - [x^2 + 5x + 6]}{h}
\]

Si sustituimos a \(h = 0 \) obtendríamos una indeterminación de la forma \(\frac{0}{0} \). Por lo tanto, debemos manipular algebraicamente toda la expresión para evaluar al límite. Eliminemos por ejemplo los corchetes y los paréntesis

\[
f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 5x + 5h + 6 - [x^2 + 5x + 6]}{h}
\]

\[
f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 5x + 5h + 6 - x^2 - 5x - 6}{h}
\]

Notemos que todos los términos del numerador tienen factor común \(h \)

\[
f'(x) = \lim_{h \to 0} \frac{2xh + h^2 + 5h}{h}
\]

Simplifiquemos las \(h \) que eran los “ceros ocultos” de la función.

\[
f'(x) = \lim_{h \to 0} 2x + h + 5
\]

\[
f'(x) = 2x + 5 \text{ Luego de sustituir } h = 0
\]

• Sea \(g(x) = \sqrt{2x + 1} \). Utilice el límite anterior para calcular \(g'(x) \)

Solución: calculemos el límite recordando cambiar \(x \) por \(x + h \). Veamos

\[
g'(x) = \lim_{h \to 0} \frac{g(x + h) - g(x)}{h}
\]
\[g'(x) = \lim_{h \to 0} \frac{\sqrt{2(x+h) + 1} - \sqrt{2x + 1}}{h} \]

Si evaluamos el límite, obtendríamos nuevamente una indeterminación, por tanto, y sabiendo que hay expresiones irracionales, racionalicemos al numerador.

\[g'(x) = \lim_{h \to 0} \frac{\left(\sqrt{2(x+h) + 1} - \sqrt{2x + 1}\right) \left(\sqrt{2(x+h) + 1} + \sqrt{2x + 1}\right)}{h \left(\sqrt{2(x+h) + 1} + \sqrt{2x + 1}\right)} \]

\[g'(x) = \lim_{h \to 0} \frac{[2(x+h) + 1] - (2x + 1)}{h \left(\sqrt{2(x+h) + 1} + \sqrt{2x + 1}\right)} \]

\[g'(x) = \lim_{h \to 0} \frac{2x + 2h + 1 - 2x - 1}{h \left(\sqrt{2(x+h) + 1} + \sqrt{2x + 1}\right)} \]

\[g'(x) = \lim_{h \to 0} \frac{2h}{h \left(\sqrt{2(x+h) + 1} + \sqrt{2x + 1}\right)} \]

\[g'(x) = \lim_{h \to 0} \frac{2}{\left(\sqrt{2(x+h) + 1} + \sqrt{2x + 1}\right)} \]

Evaluemos el límite

\[g'(x) = \frac{2}{\left(\sqrt{2x+1} + \sqrt{2x+1}\right)} \]

\[g'(x) = \frac{2}{2\sqrt{2x+1}} = \frac{1}{\sqrt{2x+1}} \]

Finalmente, la derivada de \(g(x) = \sqrt{2x + 1} \) es \(g'(x) = \frac{1}{\sqrt{2x+1}} \)

Propiedades de la derivada: calcular derivadas por medio del anterior límite se puede volver tedioso para funciones muy complejas, ya que demanda siempre una manipulación algebraica para eliminar las indeterminaciones. Por este motivo, enunciaremos sin demostración las siguientes propiedades de la derivada, junto
con su explicación. Sean \(f(x), g(x) \) dos funciones de variable real y \(c \in \mathbb{R} \). Para efectos de esta tabla utilizaremos la simbolización de la derivada como \(\frac{d}{dx} \)

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivada de una constante</td>
<td>La derivada de una constante es cero</td>
</tr>
<tr>
<td>(\frac{d(c)}{dx} = 0)</td>
<td></td>
</tr>
<tr>
<td>Derivada de una constante por</td>
<td>La derivada de una constante por una función es igual a la constante por la</td>
</tr>
<tr>
<td>(\frac{d(cf(x))}{dx} = cf'(x))</td>
<td>derivada de la función</td>
</tr>
<tr>
<td>Derivada de una función potencia</td>
<td>Para derivar una potencia basta bajar el exponente a multiplicar y restarle uno.</td>
</tr>
<tr>
<td>(\frac{d(x^n)}{dx} = nx^{n-1})</td>
<td></td>
</tr>
<tr>
<td>Derivada de una suma o resta de funciones</td>
<td>La derivada de una suma o resta de funciones es igual a la suma o resta de las derivadas</td>
</tr>
<tr>
<td>(\frac{d((f + g)(x))}{dx} = f'(x) + g'(x))</td>
<td></td>
</tr>
<tr>
<td>Derivada de un producto de funciones</td>
<td>La derivada del producto de dos funciones es igual a la primera por la derivada de la segunda, más la segunda por la derivada de la primera</td>
</tr>
<tr>
<td>(\frac{d((f \cdot g)(x))}{dx} = f(x).g'(x) + g(x).f'(x))</td>
<td></td>
</tr>
<tr>
<td>Derivada de un cociente de funciones</td>
<td>La derivada de un cociente de funciones es igual al denominador por la derivada del numerador, menos el numerador por la derivada del denominador, todo sobre el cuadrado del denominador</td>
</tr>
<tr>
<td>(\frac{d\left(\frac{f(x)}{g(x)}\right)}{dx} = \frac{g(x).f'(x) - f(x).g'(x)}{[g(x)]^2})</td>
<td></td>
</tr>
</tbody>
</table>
Derivada de una función Exponencial
\[\frac{d(a^x)}{dx} = a^x \ln a \]

exponencial es igual a la misma potencia multiplicada por el logaritmo natural de la base

Derivada de la función logarítmica
\[\frac{d(\log_a x)}{dx} = \frac{1}{x \ln a} \]

La derivada de la función logarítmica es igual a uno sobre el producto entre \(x \) y el logaritmo natural de la base

Derivada de la función \(e^x \)
\[\frac{d(e^x)}{dx} = e^x \]

La derivada de la función \(e^x \) es la misma función \(e^x \)

Derivada de la función \(\ln x \)
\[\frac{d(\ln x)}{dx} = \frac{1}{x} \]

La derivada de la función logaritmo natural es igual a uno sobre \(x \)

Vamos a realizar algunos ejemplos utilizando estas propiedades

- Calcular la derivada de \(f(x) = 5x^4 - 8x^3 + 7x^2 - 12x + 5 \)

Solución: notemos que en los 4 primeros términos de este polinomio se encuentran potencias, por lo tanto, derivemos con su respectiva regla. Como el último término es una constante, su derivada es cero. Veamos

\[f'(x) = 4 \times 5x^{4-1} - 3 \times 8x^{3-1} + 2 \times 7x^{2-1} - 1 \times 12x^{1-1} + 0 \]

\[f'(x) = 20x^3 - 24x^2 + 14x^1 - 12x^0 + 0 \]

\[f'(x) = 20x^3 - 24x^2 + 14x - 12 \]

- Calcular la derivada de \(f(x) = e^x + \sqrt{x} - 2x^3 + 4\sqrt{x^4} - 2\ln x \)

Solución: antes de derivar, debemos reexpresar las dos raíces que se encuentran en la función. Recordemos que la raíz se transforma en un exponente racional, donde el exponente del radicando es el numerador y el índice es el denominador. De esta manera tenemos que
Ahora podemos derivar con las propiedades que analizamos anteriormente

\[f(x) = e^x + x^{1/2} - 2x^3 + 4x^{4/5} - 2 \ln x \]

\[f(x) = e^x + \frac{1}{2}x^{1/2-1} - 6x^{3-1} + \frac{4}{5} \times 4x^{4/5-1} - 2 \left(\frac{1}{x} \right) \]

\[f(x) = e^x + \frac{1}{2}x^{-1/2} - 6x^2 + \frac{16}{5}x^{-1/5} - \frac{2}{x} \]

- Calcular la derivada de \(f(x) = (x^2 + 5x + 3)(8x - 5) \)

Solución: esta función tiene la estructura de un producto, por tanto la derivada se obtiene así:

\[f'(x) = (x^2 + 5x + 3)(8) + (8x - 5)(2x + 5) \]

Eliminemos los signos de agrupación

\[f'(x) = 8x^2 + 40x + 24 + 16x^2 + 30x - 25 \]

\[f'(x) = 24x^2 + 70x - 1 \]

- Calcular la derivada de \(f(x) = \frac{5x^2 - x + 1}{x^2 - 4x + 4} \)

Solución: esta función tiene la estructura de un cociente, por tanto la derivada se obtiene así:

\[f'(x) = \frac{(x^2 - 4x + 4)(10x - 1) - (5x^2 - x + 1)(2x - 4)}{(x^2 - 4x + 4)^2} \]

El lector deberá realizar los cálculos con el fin de reducir la fracción a su mínima expresión.

La regla de la cadena: no todas las funciones tienen las formas que hemos analizado arriba. Algunas otras consisten en funciones que se encuentran al interior de funciones más grandes, por ejemplo, la función \(\sqrt{2x - 1} \) está compuesta de dos expresiones: \(2x - 1 \) y la raíz cuadrada. Para este tipo de funciones, existe una regla de derivación denominada **regla de la cadena**, la cual consiste en **multiplicar la derivada externa por la derivada interna**. Ilustraremos esto con el siguiente ejemplo.
• Calcular la derivada de la función \(f(x) = \sqrt{2x - 1} \)

Solución: antes de calcular la derivada, re-expresemos la función como \(f(x) = (2x - 1)^{\frac{1}{2}} \). Aplicando la regla de la cadena, en primer lugar calcularemos la derivada de la potencia y posteriormente multiplicaremos por la derivada interna, es decir, por la derivada de \(2x - 1 \).

\[
f'(x) = \frac{1}{2} (2x - 1)^{-\frac{1}{2}}(2)
\]

Derivada de la función interna

En la solución vemos que se ha multiplicado a \(\frac{1}{2} (2x - 1)^{-\frac{1}{2}} \) que es la derivada de la función raíz, por 2 que es la derivada de \(2x - 1 \) que es la función interna. De este modo, la derivada queda así

\[
f'(x) = (2x - 1)^{-\frac{1}{2}}
\]

• Calcular la derivada de la función \(f(x) = (5x^3 - 12x^2 + 7x - 1)^{-3} \)

Solución: notemos que en esta función hay una expresión interna \((5x^3 - 12x^2 + 7x - 1) \) y una función externa (la potencia a la -3). De este modo, derivaremos primero la potencia y multiplicaremos por la derivada interna.

\[
f'(x) = -3(5x^3 - 12x^2 + 7x - 1)^{-4}(15x^2 - 24x + 7)
\]

• Calcular la derivada de la función \(f(x) = \sqrt[3]{\frac{2x-3}{3x+4x^2}} \)

Solución: las funciones externa e interna son respectivamente la raíz cuadrada y \(\frac{2x-3}{3x+4x^2} \). Para calcular la derivada, reexpresemos la raíz

\[
f(x) = \left(\frac{2x - 3}{3x + 4x^2} \right)^{\frac{1}{2}}
\]

Ahora
\[f'(x) = \frac{1}{2} \left(\frac{2x - 3}{3x + 4x^2} \right)^{-\frac{1}{2}} \left(\frac{(3x + 4x^2)(2) - (2x - 3)(3 + 8x)}{(3x + 4x^2)^2} \right) \]

El paréntesis de la derecha corresponde a la derivada de \(\frac{2x-3}{3x+4x^2} \) que es un cociente. Continuemos desarrollando la derivada obtenida

\[f'(x) = \frac{1}{2} \left(\frac{2x - 3}{3x + 4x^2} \right)^{-\frac{1}{2}} \left(\frac{6x + 8x^2 - 16x^2 + 18x + 9}{(3x + 4x^2)^2} \right) \]

\[f'(x) = \frac{1}{2} \left(\frac{2x - 3}{3x + 4x^2} \right)^{-\frac{1}{2}} \left(\frac{-8x^2 + 24x + 9}{(3x + 4x^2)^2} \right) \]

Intervalos de crecimiento o decrecimiento de una función: una de las principales aplicaciones de la derivada consiste en determinar dónde una función es creciente o decreciente. Para conceptualizar esta aplicación, comenzaremos por la siguiente propiedad de las derivadas.

Sea \(x = a \) un valor del dominio de una función \(f(x) \).

\[
\begin{align*}
& \text{si } \left\{ \\
& \quad f'(a) > 0 \text{ entonces } f \text{ es creciente en } x = a \\
& \quad f'(a) < 0 \text{ entonces } f \text{ es decreciente en } x = a \\
& \quad f'(a) = 0 \text{ o no existe entonces } x = a \text{ es un punto crítico de } f'(x)
\end{align*}
\]

El concepto de crecimiento o decrecimiento significa que cuando la derivada evaluada en un valor del dominio es positiva, la función tiene un ritmo de cambio positivo (mientras \(x \) aumenta, \(y \) también lo hace); de modo contrario, si la derivada es negativa, la función decrece (mientras \(x \) aumenta, \(y \) disminuye). Representaremos gráficamente estos hechos. Consideremos la función \(y = x^2 \). Al lado izquierdo de la parábola, notamos que la flecha va hacia abajo conforme el valor de \(x \) aumenta; esto quiere decir que la derivada evaluada en cualquier punto a la izquierda de la parábola es negativa. Por otro lado, a la derecha la derivada es positiva, o sea que la función es creciente.
Gráfico 38. Crecimiento y decrecimiento en la función $y = x^2$

Fuente: propia

Para verificar algebraicamente este hecho, encontremos la derivada de $y = x^2$ y evaluemos los valores de $x = 2$ y de $x = -2$.

$$y' = 2x$$
$$y'(2) = 2(2)$$
$$y'(2) = 4$$

Dado que la derivada es positiva en $x = 2$, decimos que $y = x^2$ es creciente en ese punto.

El procedimiento que hemos acabado de hacer es válido para un par de puntos del dominio, pero ¿Cómo saber si esto se sigue dando para unos o algunos otros valores del dominio? Para responder este interrogante, enunciaremos la siguiente propiedad de la derivada.

Si $f(x)$ es creciente o decreciente en $x = a$, también lo será en un intervalo que lo contenga en cuyos extremos $f'(x)$ sea igual a cero
Lo anterior quiere decir que si conocemos los puntos donde \(f'(x) = 0 \), podremos determinar con ellos unos intervalos, de los cuales elegiremos un valor y evaluaremos su derivada; si el resultado es positivo, la función será creciente en todo ese intervalo, en caso contrario será negativo. Retomemos por ejemplo la función \(y = x^2 \). Sabemos que su derivada es \(y' = 2x \); por lo tanto, igualemos esta derivada a cero para saber con qué valor armaremos los intervalos

\[
y' = 2x \\
2x = 0 \\
x = 0
\]

Dado que solo tenemos un punto, estableceremos dos intervalos \((-\infty, 0)\) y \((0, +\infty)\) y tomaremos un valor en cada intervalo

En \((-\infty, 0)\) tomemos \(x = -5 \)

\[
y'(-5) = 2(-5) \\
y'(-5) = -10
\]

Dado que \(-10 < 0\) decimos que \(y = x^2 \) es decreciente en \((-\infty, 0)\)

En \((0, +\infty)\) tomemos \(x = 3 \)

\[
y'(3) = 2(3) \\
y'(3) = 6
\]

Dado que \(6 > 0\) decimos que \(y = x^2 \) es creciente en \((0, +\infty)\) tal como lo ha mostrado la gráfica anterior.

Valores máximos y mínimos de una función: con el anterior concepto de crecimiento y decrecimiento, podemos abordar otra aplicación importante de las derivadas: los valores máximos y mínimos de una función. Por ello, enunciaremos esta importante propiedad de las derivadas:

- Si \(f(x) \) pasa de ser decreciente a creciente en \(x = a \), decimos que este es un valor mínimo de \(f(x) \)
- Si \(f(x) \) pasa de ser creciente a decreciente en \(x = a \), decimos que este es un valor máximo de \(f(x) \)

Considerando el ejemplo anterior, diremos que en \(x = 0 \) hay un valor mínimo, ya que antes de él, los valores de la derivada eran negativos, mientras que después de este valor, la derivada fue positiva (la función pasó de ser decreciente a creciente en \(x = 0 \).
Para tener claro un procedimiento que nos permita determinar intervalos de crecimiento y valores máximos o mínimos, enunciaremos los siguientes pasos:

1. Dada la función \(f(x) \) calculamos su derivada.
2. Igualamos esta función a cero y encontramos los valores críticos de \(f'(x) \) los cuales son los que hacen que la derivada sean cero o no exista.
3. Con estos valores establecemos intervalos en los cuales tomamos un valor de \(x \) para sustituir en la derivada. Si es positivo el valor, diremos que es creciente, si es negativo, diremos que es decreciente.
4. Con los resultados anteriores, determinaremos si en un valor crítico encontrado hay mínimo o máximo para la función.

Ilustraremos lo anterior con los siguientes ejemplos

- Considere la función \(y = \frac{1}{3}x^3 - 4x \) y encuentre sus intervalos de crecimiento y decrecimiento, así como sus valores mínimos y máximos (si los hay).

Solución: siguiendo los pasos enunciados arriba, derivaremos en primer lugar.

\[y' = x^2 - 4 \]

Ahora igualemos la derivada a cero para encontrar valores críticos

\[x^2 - 4 = 0 \]
\[(x + 2)(x - 2) = 0 \]
\[x = -2 \quad \text{ó} \quad x = 2 \]

Con estos valores determinaremos los intervalos \((-\infty, -2)(-2,2)(2, +\infty)\). Vamos en resumir en la siguiente tabla los resultados obtenidos luego de sustituir un valor de cada intervalo en la derivada

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Valor tomado</th>
<th>Valor de la derivada</th>
<th>Conclusión para la función</th>
<th>Conclusión para el punto</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, -2))</td>
<td>(x = -3)</td>
<td>(y'(-3) = 5)</td>
<td>\textit{f es creciente}</td>
<td>(x = -2) es un valor máximo</td>
</tr>
<tr>
<td>((-2,2))</td>
<td>(x = 0)</td>
<td>(y'(0) = -4)</td>
<td>\textit{f es decreciente}</td>
<td></td>
</tr>
<tr>
<td>((2, +\infty))</td>
<td>(x = 3)</td>
<td>(y'(3) = 5)</td>
<td>\textit{f es creciente}</td>
<td>(x = 2) es un valor mínimo</td>
</tr>
</tbody>
</table>

Para tener una completa información sobre los valores mínimos y máximos, evaluemos los valores de \(x \) en la función inicial.
\[y(-2) = \frac{1}{3}(-2)^3 - 4(-2) \]
\[y(-2) = \frac{8}{3} + 8 \]
\[y(-2) = \frac{16}{3} \]

Por tanto la coordenada del punto máximo es \((-2, \frac{16}{3})\)

De igual manera

\[y(2) = \frac{1}{3}(2)^3 - 4(2) \]
\[y(2) = \frac{8}{3} - 8 \]
\[y(2) = -\frac{16}{3} \]

La coordenada del punto mínimo es \((2, -\frac{16}{3})\)

La siguiente gráfica ilustrará los resultados hasta aquí obtenidos

Gráfico 39. Análisis de crecimiento para la función \(y = \frac{1}{3}x^3 - 4x \)

Fuente: propia
• Encontrar los valores mínimos o máximos de la función \(y = \frac{1}{3}x^3 + \frac{5}{2}x^2 + 6x - 1 \)

Solución: la derivada de la función es \(y' = x^2 + 5x + 6 \). Igualando esta derivada a cero tenemos que

\[
x^2 + 5x + 6 = 0 \\
(x + 3)(x + 2) = 0 \\
x = -3 \text{ ó } x = -2
\]

Los intervalos que estableceremos serán entonces \((-\infty, -3) \) \((-3, -2) \) \((-2, +\infty) \).

La tabla que estructuraremos contendrá los resultados obtenidos

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Valor tomado</th>
<th>Valor de la derivada</th>
<th>Conclusión para la función</th>
<th>Conclusión para el punto</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, -3))</td>
<td>(x = -5)</td>
<td>(y'(-5) = 6)</td>
<td>(f es creciente)</td>
<td>(x = -3) es un valor máximo</td>
</tr>
<tr>
<td>((-3, -2))</td>
<td>(x = -2.5)</td>
<td>(y'(-2.5) = -0.25)</td>
<td>(f es decreciente)</td>
<td>(x = -2) es un valor mínimo</td>
</tr>
<tr>
<td>((-2, +\infty))</td>
<td>(x = 0)</td>
<td>(y'(3) = 6)</td>
<td>(f es creciente)</td>
<td></td>
</tr>
</tbody>
</table>

Por lo tanto los puntos máximo y mínimo son \((-3, -5.5)\) y \((-2, -5.66)\)

Problemas de aplicación de máximos y mínimos: al momento de encontrar algunos modelos matemáticos, nuestro interés recae en saber cuál o cuáles son los valores extremos de la función, es decir, los valores máximos y mínimos de dicho modelo. La derivada ofrece herramientas de tipo algebraicas que permiten saber cuáles son dichos valores. Para ello, modelaremos siempre la función que nos es pedida y, posteriormente, haremos todo el análisis que hemos venido haciendo con los ejemplos anteriores. Para encontrar rápidamente el modelo matemático, basta encontrar la función objetivo y expresarla en términos de una sola variable.

• Una caja cerrada con base cuadrada debe tener un volumen de \(750\, cm^3\); el material para el suelo y la tapa cuesta \(65\) por centímetro cuadrado y el material para los lados cuesta \(40\) por centímetro cuadrado. ¿Cuáles deben ser las dimensiones de la caja de costo mínimo? ¿Cuál es el costo mínimo?

Solución: consideraremos en primer lugar las variables del problema

Sea \(x\) El lado de la base

Sea \(y\) La altura de la caja

Sea \(M\) El costo total de material

El volumen de la caja sería \(V = \text{área de la base} \times \text{altura}\)
Es decir, sabiendo que la base es un cuadrado y su área es $x \times x$, el volumen de la caja está dada por

$$V = x^2 y$$

Es decir

$$750 = x^2 y$$

Como debemos **minimizar** el costo del **material**, escribimos la siguiente ecuación que relacione dicho costo para la caja

$$M = \text{costo(base + tapa) + costo(lados)}$$

Reemplazando las variables tenemos que

$$M = 65(x^2)(2) + 40(xy)(4)$$

Los valores 65 y 40 son los precios, las expresiones x^2 y xy son las áreas de las partes de la caja y los valores 2 y 4 son el número de tapas y lados de la caja respectivamente

Ya tenemos la función costo modelada, pero aún está en términos de dos variables; para que quede en función de una sola, utilicemos el volumen para despejar y en términos de x y sustituir en la función M

$$\frac{750}{x^2} = y$$

$$M = 65(x^2)(2) + 40 \left(x \left(\frac{750}{x^2} \right) \right)(4)$$

$$M = 130x^2 + \frac{120000}{x}$$

Ahora podemos encontrar el valor mínimo o máximo. Derivemos

$$M' = 260x - \frac{120000}{x^2}$$

Igualemos a cero

$$0 = 260x - \frac{120000}{x^2}$$

$$0 = \frac{260x^3 - 120000}{x^2}$$

270
Como $x \neq 0$ (ya que si lo fuera no habría caja) podemos igualar el numerador a cero

$$260x^3 - 120000 = 0$$

Por lo tanto $x = \sqrt[3]{\frac{120000}{260}}$

$$x = 7.72$$

Los intervalos formados son entonces $(0, 7.72)$ $(7.72, +\infty)$

La tabla resumirá los resultados obtenidos

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Valor tomado</th>
<th>Valor de la derivada</th>
<th>Conclusión para la función</th>
<th>Conclusión para el punto</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 7.72)$</td>
<td>$x = 1$</td>
<td>$M'(1) = -119740$</td>
<td>f es decreciente</td>
<td>$x = 7.72$ es un valor mínimo</td>
</tr>
<tr>
<td>$(7.72, +\infty)$</td>
<td>$x = 20$</td>
<td>$M'(20) = 52300$</td>
<td>f es creciente</td>
<td></td>
</tr>
</tbody>
</table>

Por lo tanto, el costo será mínimo cuando $x = 7.72$. Utilizamos este resultado para encontrar a y de

$$\frac{750}{x^2} = y$$

$$\frac{750}{(7.72)^2} = y$$

$$12.55 = y$$

Las dimensiones de la caja que minimizan en costo son 7.72cm de lado de la base y 12.55 de altura.

- Un fabricante encuentra que el costo total, C, de producir un producto está dado por la función de costo $C = 0.05q^2 + 5q + 500$. ¿Cuál será el número de unidades a fabricar para obtener el costo promedio mínimo por unidad?

Solución: Sea $q =$ número de unidades a fabricar.

La ecuación para el costo promedio por unidad es

$$\frac{C}{q} = \frac{0.05q^2 + 5q + 500}{q}$$

Simplificando obtenemos la siguiente función
\[
\frac{C}{q} = 0.05q + 5 + \frac{500}{q}
\]

Derivemos esta función de costo promedio para encontrar los valores críticos de \(q \)

\[
\left(\frac{C}{q} \right)' = 0.05 - \frac{500}{q^2}
\]

Igualemos a cero esta derivada

\[
0 = 0.05 - \frac{500}{q^2}
\]

\[
0 = \frac{0.05q^2 - 500}{q^2}
\]

De modo que \(0.05q^2 - 500 = 0 \)

Despejando \(q \) de esta ecuación tenemos que \(q = 100 \). Los intervalos son entonces \((0, 100)(100, +\infty)\). Realicemos nuestra tabla de resumen

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Valor tomado</th>
<th>Valor de la derivada</th>
<th>Conclusión para la función</th>
<th>Conclusión para el punto</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 100))</td>
<td>(x = 20)</td>
<td>(\frac{C}{q}'(10) = -4.95)</td>
<td>(f \ es \ decreciente)</td>
<td>(x = 100) es un valor mínimo</td>
</tr>
<tr>
<td>((100, +\infty))</td>
<td>(x = 500)</td>
<td>(\frac{C}{q}'(500) = 0.048)</td>
<td>(f \ es \ creciente)</td>
<td></td>
</tr>
</tbody>
</table>

Por lo tanto, deben fabricarse 100 artículos para que el costo promedio sea mínimo. El valor de este costo será

\[
\frac{C}{q}(100) = \frac{0.05(100)^2 + 5(100) + 500}{100} = 15
\]

- Una empresa de la ciudad está investigando cuál es el nivel de ventas que hace máxima su utilidad. Para ello hizo una evaluación de los costos resultantes de producir un número determinado de unidades de su producto; encontró lo siguiente:

<table>
<thead>
<tr>
<th>Número de unidades</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo total</td>
<td>6010</td>
<td>7040</td>
<td>10250</td>
<td>16000</td>
<td>29000</td>
<td>80000</td>
<td>205000</td>
</tr>
</tbody>
</table>
El precio de venta del producto es $4000. De acuerdo a esa información:

a) ¿Cuántas unidades debe vender para maximizar sus utilidades?

b) ¿Cuánto ganaría si vende ese número de unidades?

c) Si vende el 20% menos de unidades que el número óptimo, ¿cuál sería su utilidad?

Solución:

a) Si graficamos los datos utilizando a Excel se obtiene lo siguiente:

![Gráfico 40. Gráfico derivado de la tabla para el problema de utilidad](image)

Fuente: propia

Y si hallamos la función de costos que se ajusta a esos datos, encontramos:

\[C = 10x^2 + 1000x + 5000 \] (Dada por el ajuste)

La función de ingresos es \(I = 4000x \)

Como la utilidad se halla como el excedente de los ingresos sobre los costos, ésta viene dada por:

\[
U = (4000x) - (10x^2 + 1000x + 5000) \\
U = 4000x - 10x^2 - 1000x - 5000 \\
U = -10x^2 + 3000x - 5000
\]

Si se deriva la función de utilidad, se obtiene:

\[U' = -20x + 3000 \]

Igualando a cero dicha derivada tendremos...
\[-20x + 3000 = 0 \]
\[x = \frac{3000}{20} = 150 \]

Realizando el análisis en la tabla de resumen (el lector deberá realizarla) comprobaremos que el 150 hace máxima la función.

Eso significa que la empresa debe vender 150 unidades de su producto para lograr la máxima utilidad posible.

b) Dicha utilidad sería:
\[U = -10(150)^2 + 3000(150) - 5000 \]
\[U = -$220000 \]

Si logra vender las 150 unidades, la utilidad sería $220000

c) Si vende 120 unidades (20% menos) su utilidad sería:
\[U = -10(120)^2 + 3000(120) - 5000 \]
\[U = -$211000 \]

Si vende 120 unidades, la utilidad sería $211000

- Una investigación laboral sobre tiempos encontró que la productividad \(P \), dada por el número de unidades fabricadas por un trabajador después de \(t \) horas de iniciada la jornada de 8 horas, está aproximadamente dada por la función:
\[P(t) = -t^3 + 5t^2 + 30t \]

¿En cuánto tiempo del inicio de la jornada laboral se tiene la productividad máxima? ¿Cuál es la productividad máxima?

Solución: derivando la función productividad, obtenemos lo siguiente:
\[P' = -3t^2 + 10t + 30 \]

Igualemos a cero esta derivada para obtener
\[0 = -3t^2 + 10t + 30 \]

Solucionemos por medio de la fórmula cuadrática:
\[
 x = \frac{-10 \pm \sqrt{10^2 - 4(-3)(30)}}{2(-3)} = \frac{-10 \pm \sqrt{100 + 360}}{-6} = \frac{-10 \pm 21.45}{-6}
\]

\[
 x_1 = -1.9 \quad ; \quad x_2 = 5.24
\]

Luego, a las 5.24 horas se tendrá la productividad máxima que es:

\[
P(5.24) = -(5.24)^3 + 5(5.24)^2 + 30(5.24) = 151 \text{ unidades, aproximadamente}
\]

EJERCICIOS PROPUESTOS:

Calcular la derivada de las siguientes funciones

1. \(y = 5x^2 + 8\sqrt{x} - 7 \)
2. \(y = \frac{-3x^2 + 8\sqrt{x^3} - 7x}{5x+1} \)
3. \(y = (x + 2\sqrt{x} + 3)(2x - 3x^2) \)
4. \(y = \frac{x^2 + 5x + 6}{x+3} \)
5. \(y = \log(3x + 1) \)
6. \(y = e^x + \frac{8}{x^2} + 1 \)
7. \(y = \frac{(2x+1)(x^2 - 7x + 5)}{3x - 4} \)
8. \(y = \sqrt{\frac{2x-1}{x^2 + 5x + 6}} \)
9. \(y = \sqrt[3]{(4p^3 - 5p + 1)(7p - 4)} \)
10. \(y = \sqrt[3]{\frac{(-3p^2 + 8p + 1)(4p - 7)}{p - 2}} \)
11. \(y = \log_3 \left(\frac{x+2}{2x-3} \right) \)
12. \(y = \frac{3}{\sqrt{x}} - \frac{5}{\sqrt[5]{x^3}} + 7 \)
13. \(y = \frac{-2}{\sqrt{x+1}} + \frac{8}{\sqrt[3]{x+3}} + 7x + 1 \)
14. \(y = e^{x^2} + \ln(5x - 8) + 4x \)

Encontrar los valores máximos y mínimos para cada de las siguientes funciones

1. \(y = x^3 - x \)
2. \(y = x^4 - 4x^2 \)
3. \(y = x^5 - x \)
4. \(y = x^2 - x + 2 \)
5. \(y = x^3 - 75x \)
6. \(y = x^4 - 9x^2 \)

Resolver los siguientes problemas

a. Un campo rectangular de 1500 metros cuadrados debe ser cercado y dividido en cuatro lotes iguales mediante cercas paralelas a uno de los lados. Hallar las dimensiones del campo para minimizar la cantidad de cerca utilizada. ¿Cuál es la cantidad de cerca usada?
b. Un fabricante ha estado vendiendo cierto artículo a $450 cada unidad y a este precio los consumidores han adquirido 2500 unidades al mes. Se desea incrementar el precio y se estima que por cada $50 de incremento en el precio se venderán 200 unidades menos cada mes. El costo de producción de cada unidad es de $150. ¿Cuál debe ser el precio de venta de cada unidad para maximizar las utilidades de la empresa? ¿Cuál es la utilidad máxima?

c. Un cultivador de naranjas sabe por experiencia que si se plantan 100 árboles por hectárea, la producción promedio por árbol es de 400 unidades por cosecha. Además, considera que la producción por árbol disminuirá en 2 unidades por cada árbol de más que siembre por hectárea. ¿Cuántos árboles se deben plantar por hectárea con el fin de maximizar la producción de naranjas? ¿Cuál es la producción máxima por hectárea?

d. Un fabricante está diseñando una caja abierta para empacar su producto a partir de una lámina cuadrada de cartón de dimensiones 18x18 centímetros. El proceso se realiza quitando un pequeño cuadrado de cada esquina de la lámina y plegando para formar los lados. ¿Cuál es el volumen máximo posible con este diseño y las dimensiones de la caja?

e. Encontrar dos números positivos cuya suma sea 70 y el producto de los mismos sea máximo. ¿Cuál es el producto máximo?

5.4 Antiderivada de funciones

La operación inversa a la derivada: en los ejemplos y ejercicios propuestos en la sección anterior, nos era dada una función y nuestro objetivo básico era encontrar su derivada. En esta sección haremos lo contrario: dada una función $f(x)$, hallaremos otra función $g(x)$ de modo que, al derivar esta última, obtengamos nuevamente a $f(x)$. Comencemos con la función $f(x) = 2x$; si nos preguntamos ¿Qué función $g(x)$ pudimos haber derivado para obtener a $f(x)$? Probablemente la respuesta más simple es que $g(x) = x^2$. Sin embargo, consideremos la función $g(x) = x^2 + 1$ o $g(x) = x^2 - 4$ o $g(x) = x^2 - 7$ y derivemos cada una de ellas. Observaremos que la derivada obtenida es la misma $f(x) = 2x$. Entonces ¿Qué difiere una función de otra? La respuesta es la constante que acompaña a x^2. De este modo, definiremos la siguiente propiedad de las derivadas que se consolidará puente con la nueva operación que abordaremos: la antiderivada.
Si \(f(x) \) es una función de variable real, las funciones que al derivarlas dan como resultado \(f(x) \) difieren solo en una constante

De esta manera, las funciones que, al derivarlas dan como resultado \(f(x) = 2x \), se pueden generalizar de la siguiente manera

\[
g(x) = x^2 + C
\]

Donde \(C \in \mathbb{R} \) es una constante.

Con las reflexiones anteriores, pasaremos a definir la antiderivada de una función. Sea \(f(x) \) una función de variable real. Llamamos \textbf{antiderivada} o \textbf{integral indefinida} a la función \(g(x) \) tal que \(f(x) = g'(x) \) y como todas estas funciones \(g(x) \) difieren solo en una constante, diremos que la forma general de la antiderivada de \(f(x) \) (simbolizada como \(\int f(x) \, dx \)) es

\[
\int f(x) \, dx = g(x) + C
\]

La letra \(C \) es llamada \textbf{constante de integración}.

\begin{center}
\textbf{Notas:}
\begin{enumerate}
 \item El signo \(\int \) tiene forma de “S” alargada en honor del Matemático alemán Bernhard Riemann (1826-1886), quien utilizó esta letra como indicación de la palabra “sumatoria”, término utilizado para calcular por medio de antiderivadas, el área bajo una curva.
 \item La expresión \(dx \) es muda, y solamente indica con respecto a qué variable se está realizando la antiderivada, por lo que siempre debemos ubicarla luego de la función.
\end{enumerate}
\end{center}

\textbf{Propiedades de la antiderivada:} al igual que en la derivada, el cálculo de una antiderivada puede tomar mucho tiempo si solo se hace de manera intuitiva, intentando adivinar cuál es la función que se tuvo que derivar para obtener la que nos es dada. De esta manera, enunciaremos las principales propiedades de la antiderivada, recordando que, luego de realizada una antiderivada, el lector podrá verificar su validez al derivar la función obtenida.

\begin{center}
\textbf{Notas:} en adelante, hablaremos de “integral” al referirnos a la antiderivada de una función. Cuando sea necesario, volveremos a dicho término
\end{center}
Supongamos que \(f(x), g(x) \) son funciones de variable real y \(k \in \mathbb{R} \) una constante.

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral de una constante</td>
<td>La integral de una constante es igual a la constante multiplicada por (x)</td>
</tr>
<tr>
<td>(\int k , dx = kx + C)</td>
<td></td>
</tr>
<tr>
<td>Integral de la función potencia</td>
<td>Para calcular la integral de una potencia basta sumarle 1 al exponente y dividir toda la potencia entre (n + 1)</td>
</tr>
<tr>
<td>(\int x^n , dx = \frac{x^{n+1}}{n+1} + C \text{ si } n \neq -1)</td>
<td></td>
</tr>
<tr>
<td>Integral de una constante por una función</td>
<td>La integral de una constante por una función es igual a la constante por la integral de la función</td>
</tr>
<tr>
<td>(\int kf(x) , dx = k \int f(x) , dx + C)</td>
<td></td>
</tr>
<tr>
<td>Integral de la suma de dos funciones</td>
<td>La integral de una suma o resta de funciones es igual a la suma o resta de las integrales</td>
</tr>
<tr>
<td>(\int (f(x) \pm g(x)) , dx = \int f(x) , dx \pm \int g(x) , dx + C)</td>
<td></td>
</tr>
<tr>
<td>Integral de la función exponencial</td>
<td>La integral de la función exponencial es igual a la potencia dividida el logaritmo natural de la base</td>
</tr>
<tr>
<td>(\int a^x , dx = \frac{a^x}{\ln a} + C)</td>
<td></td>
</tr>
<tr>
<td>Integral de la función inversa</td>
<td>La integral de la función inversa a (x) es igual al logaritmo natural de (x)</td>
</tr>
<tr>
<td>(\int \frac{1}{x} , dx = \ln x + C)</td>
<td></td>
</tr>
<tr>
<td>Integral de la función (e^x)</td>
<td>La integral de la función (e^x) es la misma (e^x)</td>
</tr>
<tr>
<td>(\int e^x , dx = e^x + C)</td>
<td></td>
</tr>
</tbody>
</table>

Realicemos algunos ejemplos para ilustrar estas propiedades.
• Calcular la integral de la función \(f(x) = 3x^2 + 6x - 2 \)

Solución: en este caso tenemos una función polinómica de grado 2, por tanto, integraremos cada uno de los términos y aplicaremos la propiedad de la integral de potencias.

\[
\int f(x)dx = \int (3x^2 + 6x - 2)dx
\]

\[
\int f(x)dx = 3 \frac{x^{2+1}}{2+1} + 6 \frac{x^{1+1}}{1+1} - 2x + C
\]

\[
\int f(x)dx = 3 \frac{x^3}{3} + 6 \frac{x^2}{2} - 2x + C
\]

Simplificando obtendremos

\[
\int f(x)dx = x^3 + 3x^2 - 2x + C
\]

• Calcular la integral de la función \(f(x) = 5\sqrt{x} - 4x + \frac{7}{\sqrt{x}} \)

Solución: reescribamos la función de modo que no queden ni raíces ni denominadores

\[
f(x) = 5x^{\frac{1}{2}} - 4x + 7x^{-\frac{1}{3}}
\]

Ahora podemos integrar

\[
\int f(x)dx = \int \left(5x^{\frac{1}{2}} - 4x + 7x^{-\frac{1}{3}}\right)dx
\]

\[
\int f(x)dx = 5 \frac{x^{\frac{1+1}{2}}}{2+1} - 4 \frac{x^{1+1}}{1+1} + 7 \frac{x^{-\frac{1+1}{3}}}{-\frac{1}{3}+1} + C
\]

\[
\int f(x)dx = 5 \frac{x^{\frac{3}{2}}}{3} - 4 \frac{x^2}{2} + 7 \frac{x^{\frac{2}{3}}}{\frac{2}{3}} + C
\]

Simplificando las fracciones de los coeficientes, recordemos que al ser una división de fracciones, el producto es cruzado. Veamos

279
\[
\int f(x)dx = \frac{10}{3} x^\frac{3}{2} - 2x^2 + \frac{21}{2} x^\frac{2}{3}
\]

- Encontrar una función tal que su derivada esté dada por \(f(x) = 4x^3 + 2x - 1 \) y que contenga el punto \((1,4)\)

Solución: este tipo de problemas reciben el nombre de ecuaciones diferenciales con valores de frontera, lo cual indica que nuestra incógnita es una función a la cual debemos derivar para obtener la que nos dieron. El término valor de frontera, está asociado al hecho de que nos dieron un valor para determinar a la constante \(C \). Nuestro objetivo es encontrar primero la integral de la función dada (llamémosla \(g(x) \)) y luego sustituir los valores del punto dado para encontrar a \(C \). Veamos

\[
g(x) = \int f(x)dx = \int (4x^3 + 2x - 1) \, dx
\]

\[
g(x) = \int f(x)dx = 4\frac{x^4}{4} + 2\frac{x^2}{2} - 1x + C
\]

\[
g(x) = \int f(x)dx = x^4 + x^2 - x + C
\]

Ahora, como sabemos que la función pasa por \((1,4)\) sustituyamos a \(x \) por 1 y a \(y \) por 4.

\[4 = (1)^4 + (1)^2 - 1 + C\]

\[4 = 1 + 1 - 1 + C\]

\[3 = C\]

Finalmente, la función buscada es \(g(x) = x^4 + x^2 - x + 3 \)

- Calcular la integral de la función \(f(x) = \frac{(2x-1)(5x^3-4)}{5\sqrt{x^2}} \)

Solución: la estrategia que utilizaremos es la siguiente: primero haremos el producto de los polinomios de numerador, posteriormente repartiremos el denominador entre cada término de dicho producto y finalmente, simplificaremos las fracciones para integrar.

\[
f(x) = \frac{(2x-1)(5x^3-4)}{5\sqrt{x^2}}
\]

\[
f(x) = \frac{10x^4 - 5x^3 - 8x + 4}{x^\frac{2}{5}}
\]
$f(x) = \frac{10x^4}{x^5} - \frac{5x^3}{x^5} - \frac{8x}{x^5} + \frac{4}{x^5}$

Recordemos que para dividir potencias de igual base, se escribe la misma base y se restan los exponentes

$f(x) = 10x^{\frac{18}{5}} - 5x^{\frac{13}{5}} - 8x^{\frac{3}{5}} + 4x^{-\frac{2}{5}}$

Ahora podemos integrar

$$\int f(x)\,dx = \int \left(10x^{\frac{18}{5}} - 5x^{\frac{13}{5}} - 8x^{\frac{3}{5}} + 4x^{-\frac{2}{5}}\right)\,dx$$

$$\int f(x)\,dx = 10\frac{x^{\frac{23}{5}}}{\frac{23}{5}} - 5\frac{x^{\frac{18}{5}}}{\frac{18}{5}} - 8\frac{x^{\frac{8}{5}}}{\frac{8}{5}} + 4\frac{x^{\frac{3}{5}}}{\frac{3}{5}} + C$$

$$\int f(x)\,dx = \frac{50}{23}x^{\frac{23}{5}} - \frac{25}{18}x^{\frac{18}{5}} - 5x^{\frac{8}{5}} + \frac{20}{3}x^{\frac{3}{5}} + C$$

Método de sustitución para integrales indefinidas: las reglas de integración que abordamos arriba corresponden a funciones simples, es decir, que no se encuentran dentro de otras. Así como para la derivación existe la regla de cadena para funciones compuestas, también en la antiderivación poseemos herramientas para integrar una función que se encuentre junto a otra multiplicándola. La única condición para que se pueda llevar a cabo esta antiderivada, es que una de las funciones sea la derivada de la otra, o al menos una pequeña variación de ella. El procedimiento es el siguiente:

1. Identificamos dentro del producto de funciones que una de ellas se pueda expresar como derivada de la otra.
2. A esta última función la llamaremos u, la derivaremos y expresaremos la otra función como esta misma derivada.
3. Procedemos a integrar para luego recuperar la variable.

Aunque el procedimiento parece ser algo complejo, la práctica le mostrará al estudiante que integrar con este método es relativamente fácil. Veamos algunos ejemplos:
- Calcular la integral de \(f(x) = 2x\sqrt{x^2 - 1}dx \)

Solución: identifiquemos las dos funciones que se encuentran multiplicadas en esta expresión. \(x^2 - 1 \) y su derivada es \(2xdx \) por lo que podemos tomar a \(u = x^2 - 1 \) y sabremos que su derivada se encuentra afuera. Al momento de derivar, escribiremos respecto a quien derivamos; es decir, para indicar que acabamos de derivar respecto a la variable \(x \), escribiremos \(dx \) junto a la función derivada.

Sea \(u = x^2 - 1 \)

\[du = 2x\,dx \]

Por lo tanto, la integral quedará escrita en términos de \(u \) de la siguiente manera

\[\int f(x)\,dx = \int \sqrt{u}\,du \quad \text{Con } u = x^2 - 1 \quad \text{y } du = 2x\,dx \]

Ahora

\[\int f(x)\,dx = \int u^{\frac{1}{2}}du \]

\[\int f(x)\,dx = \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C \]

\[\int f(x)\,dx = \frac{2u^{\frac{3}{2}}}{3} + C \]

Recuperemos la variable, es decir, escribamos nuevamente \(x^2 - 1 \)

\[\int f(x)\,dx = \frac{2(x^2 - 1)^{\frac{3}{2}}}{3} + C \]

- Calcular \(\int (x^3 + 5x + 1)^{12}(6x^2 + 10)\,dx \)

Solución: podríamos desarrollar esta potencia y luego hacer el producto, pero el proceso sería largo y complejo. Por lo tanto, identifiquemos a \(u = x^3 + 5x + 1 \) y notemos si \(6x^2 + 10 \) tiene algo que ver con su derivada.

\[u = x^3 + 5x + 1 \quad \text{du} = (3x^2 + 5)\,dx \]
Si multiplicamos a du por dos tenemos que
$2du = (6x^2 + 10x)dx$ y este coincide con uno de los factores de la función

Ahora expresemos la integral en términos de u

$$\int (x^3 + 5x + 1)^{12}(6x^2 + 10)dx = \int u^{12}2du$$

Saquemos el 2 de la integral en virtud de la propiedad enunciada

$$\int (x^3 + 5x + 1)^{12}(6x^2 + 10)dx = 2\int u^{12}du$$

$$\int (x^3 + 5x + 1)^{12}(6x^2 + 10)dx = 2\frac{u^{13}}{13} + C$$

Recuperemos la variable

$$\int (x^3 + 5x + 1)^{12}(6x^2 + 10)dx = 2\frac{(x^3 + 5x + 1)^{13}}{13} + C$$

- Calcular la integral de la función $f(x) = xe^{x^2 - 4}$

Solución: siguiendo el procedimiento anterior, hagamos $u = x^2 - 4$ Por lo tanto

$$u = x^2 - 4 \quad du = 2xdx \quad \frac{du}{2} = xdx$$

De modo que la integral queda en términos de u de la siguiente manera

$$\int 2xe^{x^2-4}dx = \int e^u \frac{du}{2}$$

$$\int 2xe^{x^2-4}dx = \frac{1}{2} \int e^udu$$

$$\int 2xe^{x^2-4}dx = \frac{1}{2}e^u + C$$

$$\int 2xe^{x^2-4}dx = \frac{1}{2}e^{x^2-4} + C$$
• Calcular la integral de la función \(f(x) = \frac{2x + 5}{x^2 + 5x + 6} \)

Solución: Hagamos \(u = x^2 + 5x + 6 \) Por lo tanto

\[
\begin{align*}
 u &= x^2 + 5x + 6 \quad du = (2x + 5)dx \\
 \int \frac{2x + 5}{x^2 + 5x + 6} \, dx &= \int \frac{du}{u}
\end{align*}
\]

Este tipo de integrales tiene la forma inversa, por lo tanto, su integral será el logaritmo natural de la función. Veamos

\[
\int \frac{2x + 5}{x^2 + 5x + 6} \, dx = \ln u + C
\]

\[
\int \frac{2x + 5}{x^2 + 5x + 6} \, dx = \ln(x^2 + 5x + 6) + C
\]

La integral definida: en muchas de las aplicaciones de la antiderivada surge la pregunta sobre el valor de una función en un intervalo conociendo la función derivada. Para resolver este problema aparece la integral definida, la cual se puede conceptualizar como la antiderivada de la función evaluada en un intervalo. Simbólicamente, esta integral definida de \(f(x) \) en un intervalo \([a, b]\) de su dominio está dada por

\[
A = \int_a^b f(x) \, dx
\]

Esta variación de la integración posee dos números junto al símbolo integral, los cuales corresponden a los extremos del intervalo. Gráficamente, podemos representar dicha integral de la siguiente manera: consideremos la función \(f(x) = 3x^2 \) en el intervalo \([1, 3]\) y apliquemos color al área bajo la curva de dicha función en el intervalo dado.
Gráfico 41. Área bajo la curva de $f(x) = 3x^2$ en $[1,3]$

Fuente: propia

Una de las aplicaciones de la integral definida es calcular el área de dicha región sombreada. Utilizado el software Geogebra, notaremos que el área bajo la curva es 26 unidades cuadradas, veamos4

El cálculo anterior fue realizado con el siguiente comando en la línea de escritura de Geogebra: integral $\int_{1}^{3} 3x^2 \, dx$.

Gráfico 42. Representación gráfica del área de la región bajo $f(x) = 3x^2$ en $[1,3]$

Fuente: propia

Para poder calcular manualmente dicha área, enunciaremos sin demostración, un importante teorema llamado "Teorema fundamental del cálculo" el cual posee dos partes.

4 El cálculo anterior fue realizado con el siguiente comando en la línea de escritura de Geogebra: integral $\int_{1}^{3} 3x^2 \, dx$.

285
Sean \(f(x) \) y \(g(x) \) dos funciones, además, \(g(x) \) es una de las antiderivadas de \(f(x) \). Bajo estas condiciones se cumple que

\[
\begin{align*}
&i. \quad \frac{d}{dx} \int_a^x f(x) \, dx = f(x) + c \\
&ii. \quad \int_a^b f(x) \, dx = g(b) - g(a) \quad \text{siempre que} \quad f(x) = g'(x)
\end{align*}
\]

La primera parte explica la relación inversa entre la derivada y la integral. Si se deriva una función que ha sido integrada, el resultado será la misma función. La segunda parte explica que, para hallar una integral definida en un intervalo, basta calcular primero la antiderivada y luego hacer la diferencia entre las funciones evaluadas en los extremos de dicho intervalo.

Nota: en la práctica, se utiliza más la segunda parte de este último teorema. Por tanto, al referirnos a la aplicación del Teorema Fundamental del Cálculo, nos referiremos a la parte ii.

Veamos algunos ejemplos que nos ilustren esta propiedad.

- Calcular la integral definida \(\int_1^3 3x^2 \, dx \)

\textbf{Solución:} este corresponde al ejemplo gráfico que resolvimos utilizando a Geogebra. Ahora lo resolveremos utilizando el Teorema Fundamental del cálculo.

\[
\int_1^3 3x^2 \, dx = x^3 \bigg|_1^3 = 3^3 - 1^3 = 27 - 1
\]

La notación anterior consiste en encontrar la antiderivada y expresar mediante medio corchete los límites de integración. Ahora evaluemos en cada número y restemos

\[
\int_1^3 3x^2 \, dx = (3)^3 - (1)^3 \\
\int_1^3 3x^2 \, dx = 27 - 1
\]
La respuesta anterior coindice con la encontrada previamente.

Nota: nótese que hemos dejado de escribir la constante de integración C luego de calcular una antiderivada. Esto se debe a que si la dejamos, se eliminaría al momento de hacer la resta entre los valores evaluados de los extremos en la función integrada.

- Calcular la integral definida de \(f(x) = x^2 + 5x + 6 \) en \([-4, 3]\)

Solución: la integral definida queda de la siguiente manera

\[
\int_{-4}^{3} (x^2 + 5x + 6) \, dx = \left[\frac{x^3}{3} + \frac{5x^2}{2} + 6x \right]_{-4}^{3}
\]

\[
\int_{-4}^{3} (x^2 + 5x + 6) \, dx = \left(\frac{(3)^3}{3} + \frac{5 (3)^2}{2} + 6(3) \right) - \left(\frac{(-4)^3}{3} + \frac{5 (-4)^2}{2} + 6(-4) \right)
\]

\[
\int_{-4}^{3} (x^2 + 5x + 6) \, dx = \left(\frac{(3)^3}{3} + \frac{5 (3)^2}{2} + 6(3) \right) - \left(\frac{(-4)^3}{3} + \frac{5 (-4)^2}{2} + 6(-4) \right)
\]

\[
\int_{-4}^{3} (x^2 + 5x + 6) \, dx = \left(\frac{27}{3} + \frac{5 \cdot 9}{2} + 18 \right) - \left(-\frac{64}{3} + \frac{16}{2} - 24 \right)
\]

\[
\int_{-4}^{3} (x^2 + 5x + 6) \, dx = \left(9 + \frac{45}{2} + 18 \right) - \left(-\frac{64}{3} + 40 - 24 \right)
\]

\[
\int_{-4}^{3} (x^2 + 5x + 6) \, dx = 27 + \frac{45}{2} + \frac{64}{3} - 16
\]

\[
\int_{-4}^{3} (x^2 + 5x + 6) \, dx = \frac{11 + 45}{2} + \frac{64}{3}
\]

\[
\int_{-4}^{3} (x^2 + 5x + 6) \, dx = 11 + \frac{263}{6}
\]
\[\int_{-4}^{3} (x^2 + 5x + 6) \, dx = \frac{329}{6} \]

- Calcular el área bajo la curva de \(f(x) = x^2 e^{x^3} \) en el intervalo \([0,1]\)

Solución: el área buscada está dada por

\[A = \int_{0}^{1} x^2 e^{x^3} \, dx \]

Para poder calcular la antiderivada, debemos utilizar el método de sustitución, por tanto, hagamos \(u = x^3 \)

\[
\begin{align*}
 u &= x^3 \quad du = 3x^2 \, dx \\
 \frac{du}{3} &= x^2 \, dx \\
 \int x^2 e^{x^3} \, dx &= \frac{1}{3} \int e^{u} \, du \\
 \int x^2 e^{x^3} \, dx &= \frac{1}{3} e^{u} + C \\
 \int x^2 e^{x^3} \, dx &= \frac{1}{3} e^{x^3} + C
\end{align*}
\]

Ahora volvamos a la integral definida

\[
A = \int_{0}^{1} x^2 e^{x^3} \, dx = \left. \frac{1}{3} e^{x^3} \right|_{0}^{1}
\]

\[
A = \frac{1}{3} \left(e^{1^3} - e^{0^3} \right) = \frac{1}{3} (e - 1)\approx 0.57
\]

El área es entonces 0.57 unidades cuadradas aproximadamente

Problemas de aplicación de la integral: en ciertos problemas de la administración y la economía nos es dada una función que determina el ritmo de
cambio de una variable respecto a otra. La integral definida e indefinida nos posibilita conocer el valor evaluado en la función que ha sido derivada. Los siguientes problemas darán cuenta de los procedimientos y propiedades de la integral abordados anteriormente. Veamos

- El departamento de ventas y mercadeo de una empresa usa un modelo matemático para pronosticar el aumento de sus ventas de cierto artículo en función del tiempo. El modelo de ritmo de cambio del número de ventas luego de cierto tiempo t, en unidades por mes, está dado por

$$ \frac{dV}{dt} = 3200 - 2500e^{-0.05t} $$

Donde $0 \leq t \leq 18$ meses

a) ¿Cuál es la expresión matemática que da el número de unidades que se espera vender t meses después de la introducción?

b) ¿Cuántas unidades se espera vender en los primeros 6 meses?

c) ¿Cuántas unidades se espera vender en los primeros 12 meses?

Solución: La ecuación que da la razón de cambio para las variables involucradas, se debe integrar para hallar la expresión matemática solicitada.

i. Si llamamos $V(t)$ a la función de ventas de la empresa, tendremos que

$$ V(t) = \int (3200 - 2500e^{-0.05t}) \, dt $$

Integrando la función (recordemos integrar la expresión $e^{-0.05t}$ por sustitución) tenemos que

$$ V(t) = 3200t + 50000e^{-0.05t} + C $$

Cuando $t = 0$, $V = 0$, luego $0 = 50000 + C$

Entonces la expresión matemática es: $V = 3200t + 50000e^{-0.05t} - 50000$

ii. Si $t = 6$ tenemos que

$$ V = 3200(6) + 50000(e^{-0.05(6)} - 1) = 19200 - 12959 = 6241 \text{ unidades} $$

iii. Si $t = 12$

$$ V = 3200(12) + 50000(e^{-0.05(12)} - 1) = 38400 - 22559 = 15841 \text{ unidades} $$
Suponga que la temperatura diaria de la ciudad de Medellín cambia en verano según la razón (grado centígrados/hora) dada por la expresión matemática siguiente:

\[\frac{dT}{dt} = 0.05t^2 - t + 5 \]

\[0 \leq t \leq 7 \] y la temperatura a las 5 a.m. (correspondiente a \(t = 0 \)) es de 13 °C

a) Encontrar una expresión matemática que dé la temperatura en cualquier instante \(t \) entre las 5 a.m. y las 12 del mediodía.

b) ¿Cuál es la temperatura esperada a las 9 a.m.?

c) ¿Cuál es la temperatura esperada a las 12 a.m.?

Solución: nuevamente tenemos una función de ritmo de cambio, en este caso de temperatura respecto al tiempo. Utilicemos la integral para determinar la función temperatura

a) La ecuación que da la razón de cambio para las variables involucradas, se debe integrar para hallar la expresión matemática solicitada:

\[T = \int (0.05t^2 - t + 5)dt \]

Integrando tenemos que

\[T = \frac{0.05t^3}{3} - \frac{1}{2}t^2 + 5t + C \]

Cuando \(t = 0 \), \(T = 13 \), luego \(13 = C \)

Entonces la expresión matemática es: \(T = \frac{0.05}{3}t^3 - \frac{1}{2}t^2 + 5t + 13 \)

b) A las 9:00 am, \(t = 4 \) entonces:

\[T = \frac{0.05}{3}(4)^3 - \frac{1}{2}(4)^2 + 5(4) + 13 \]

\[T = 1.06 - 8 + 20 + 13 \]

\[T = 26.06 °C \]

c) A las 12:00m \(t = 7 \) entonces:

\[T = \frac{0.05}{3}(7)^3 - \frac{1}{2}(7)^2 + 5(7) + 13 \]

\[T = 5.71 - 24.5 + 35 + 13 \]

\[T = 29.21 °C \]
EJERCICIOS PROPUESTOS:

Calcular la antiderivada de las siguientes funciones

1. \(f(x) = \frac{3}{4}x^7 - 2\sqrt[2]{x} + 4 \)
2. \(f(x) = 2e^x + \frac{3}{x} + \frac{2}{\sqrt[2]{x}} + 4x - 3 \)
3. \(f(x) = \frac{(2x-3\sqrt[5]{x^7}+3)(x^2-4)}{x^3} \)
4. \(f(x) = (5e^x + \frac{6}{\sqrt[3]{x}} + \frac{5}{x} - 2) \)
5. \(f(x) = (x + \sqrt{x} - 3)(x - \sqrt{x} + 3)(2x - 1) \)
6. \(f(x) = (2x - 1)\sqrt{x^2 - x + 3} \)
7. \(f(x) = \frac{3x^2-4x+5}{x^3-2x^2+5x} \)
8. \(f(x) = (4x - 8)e^{x^2-4x} \)
9. \(f(x) = 3^{2x^3+2x}(3x^2 + 1) \)
10. \(f(x) = (2x + 2)e^{2x}e^{x^2} \)

Calcular la integral definida de las siguientes funciones

1. \(\int_2^4 (2x - 4)\,dx \)
2. \(\int_2^4 (3x^2 + x - 2)\,dx \)
3. \(\int_0^1 [(x + \sqrt[2]{x} - 1)(2x - x^2 + 4\sqrt[3]{x^3})]\,dx \)
4. \(\int e^{4x} \frac{dx}{x} \)
5. \(\int_{\ln 2}^{\ln 5} 2e^x\,dx \)
6. \(\int_0^4 (2x\sqrt{x^2 + 1})\,dx \)
7. \(\int_0^1 [(2x - 1)e^{x^2-x}]\,dx \)
8. \(\int_0^2 \frac{4x+2}{2x^2+2x+5}\,dx \)
9. \(\int_2^4 (2x - 5)(2x^2 - 10x + 7)^3 \)
10. \(\int_0^1 (3x^2 + 2x - 1)5^{x^3+x^2-x+9} \)

Resolver lo siguientes problemas

1. El ritmo de cambio del número de accionistas de una empresa en función del tiempo está dado por
 \[\frac{dP}{dt} = 4t^2 + 6t + 450 \]
 Donde \(0 \leq t \leq 24 \)

 Si \(P(0) = 0 \) determine el modelo matemático que permita conocer el número de accionistas y estime el número de accionistas entre los primeros 4 y 12 meses.
2. Usted como encargado del mercadeo de una importante empresa de comunicaciones ha encontrado que el nivel de audiencia del más famoso programa de noticias tiene el siguiente ritmo de cambio durante los 70 minutos que dura dicho programa

\[
\frac{dA}{dt} = 500e^{-2t} + 350t
\]

Donde \(0 \leq t \leq 70\)

Si \(A(0) = 300\) Encuentre el modelo que se ajuste al número de televidentes del noticiero en función de \(t\). Encuentre la audiencia aproximada entre los 15 y los 40 minutos. La sección de farándula dura los últimos 12 minutos del programa ¿Cuál es el nivel de audiencia del noticiero en esta sección?

3. El ritmo de cambio de la demanda de un artículo con respecto al número \(q\) de productos vendidos está dado por

\[
\frac{dF}{dq} = \frac{4q + 6q^2}{q^3 + q^2 + 150}
\]

Encuentre la ecuación de demanda del artículo.

SOLUCIÓN A LOS EJERCICIOS PROPUESTOS:

SECCIÓN 5.1 LÍMITE DE FUNCIONES

Encontrar el valor (si existe) de los siguientes límites

1. \(\lim_{x \to 2}(5x^2 + 8x - 1) = 35\)
2. \(\lim_{m \to 3}\frac{5m-1}{3-4m} = -\frac{14}{9}\)
3. \(\lim_{x \to -1}\frac{2x^2 + 5}{x+1} \text{ no existe}\)
4. \(\lim_{a \to 5}\frac{\sqrt{5a+a^2}}{7} = \frac{5\sqrt{2}}{7}\)
5. \(\lim_{r \to 5}\frac{2r+7}{r^2-25} \text{ no existe}\)
6. \(\lim_{k \to 9}(\sqrt{k} + 5k - 1) = 47\)
7. \(\lim_{b \to 0}\frac{2b^3+5b^2+1}{b^2+b-1} = -1\)
8. \(\lim_{y \to 5}\frac{y^2-25}{\sqrt{20y-36}} = 0\)
9. \(\lim_{j \to 7}\frac{5j^3+4j-1}{\sqrt{7j+13}} = \frac{871}{10}\)
10. \(\lim_{d \to 0}\frac{d-\sqrt{8d}}{d+2} = 0\)
11. \(\lim_{g \to 5} \frac{\sqrt{g+4}-3}{\sqrt{g-4}+1} = \frac{1}{3} \)

12. \(\lim_{x \to 3} \frac{x^2-9}{x^2-x-6} = \frac{6}{5} \)

13. \(\lim_{m \to 8} \frac{\sqrt{m^2+36}-10}{\sqrt{9m+28}-10} = \frac{16}{9} \)

14. \(\lim_{p \to 0} \frac{\sqrt{p^2+4}-2}{2\sqrt{p^2+2p+4}} = 0 \)

15. \(\lim_{l \to 20} \frac{20-\sqrt{5l+300}}{7-\sqrt{2l+9}} = \frac{7}{8} \)

16. \(\lim_{h \to 9} \frac{2h^2-162}{h^2-18h+81} \) no existe

17. \(\lim_{d \to 12} \frac{\sqrt{5d+4}-8}{\sqrt{3d}-6} = \frac{5}{4} \)

18. \(\lim_{w \to -5} \frac{6w^2+9w-105}{7w^2+9w-130} = \frac{51}{61} \)

19. \(\lim_{a \to 1} \frac{a-\sqrt{a}}{a^3-a} = \frac{1}{4} \)

20. \(\lim_{h \to -3} \frac{h^2-9}{\sqrt{2h^2+7h+3}} = \sqrt{\frac{6}{5}} \)

21. \(\lim_{x \to \infty} \frac{16x^6+7x-1}{8x^2+5x^3-10+x} \) no existe

22. \(\lim_{x \to \infty} \frac{6x^4+7x^3+15x-81}{3x^5+10x^2+5x+1} = 0 \)

23. \(\lim_{x \to \infty} \frac{3\sqrt{14x^4+27x^6+10x-2}}{\sqrt{36x^8-15x^6+50x-13}} = 0 \)

24. \(\lim_{x \to \infty} \frac{2x^4-\frac{3}{144x^8+16x^{16}-8}}{5x^6+\sqrt{3x^{10}+14x^7+144x+1}} = 0 \)

25. \(\lim_{x \to 0} f(x) = 0 \) y \(\lim_{x \to 2} f(x) \) no existe

26. \(\lim_{x \to -2} f(x) \) no existe y \(\lim_{x \to 5} f(x) \) no existe

SECCIÓN 5.2 CONTINUIDAD DE FUNCIONES

Determinar si las siguientes funciones son continuas o discontinuas en los puntos indicados. En caso de que la discontinuidad sea evitable, defina la nueva función continua

1. \(f \) es continua en \(x = -5 \) y es discontinua inevitable en \(x = 0 \)

2. \(f \) es discontinua evitable en \(x = -2 \) y discontinua inevitable en \(x = 3 \).

\[
g(x) = \begin{cases}
3x^2 - x + 2 & \text{si } x < -2 \\
16 & \text{si } x = -2 \\
4x^2 & \text{si } -2 < x < 3 \text{ es la nueva función} \\
36 & \text{si } x = 3 \\
x^2 + 3x + 18 & \text{si } x > 3
\end{cases}
\]
3. \(f \) es discontínua inevitable en \(x = 0 \) y en \(x = 2 \)

4. \(a = 1 \quad b = -5 \)

5. Primera solución \(a = 3 \quad b = 2 \). Segunda solución \(a = -9 \quad b = 14 \)

SECCIÓN 5.3 DERIVADA DE FUNCIONES

Calcular la derivada de las siguientes funciones. El lector simplificará los resultados.

1. \(y' = 10x + 4\sqrt{x} \)

2. \(y' = \frac{(5x+1)(-6x+12\sqrt{x}-7)-(-3x^2+8\sqrt{x^3}-7x)(5)}{(5x+1)^2} \)

3. \(y' = (x + 2\sqrt{x} + 3)(2 - 6x) + (2x - 3x^2) \left(1 + \frac{1}{\sqrt{x}} \right) \)

4. \(y' = 1 \)

5. \(y' = \frac{3}{(3x+1)\ln 10} \)

6. \(y' = e^x - \frac{16}{x^3} \)

7. \(y' = \frac{(3x-4)(6x^2-26x^3)+2x^3-13x^2+3x+5)(3)}{(3x-4)^2} \)

8. \(y' = \frac{1}{2} \left(\frac{2x-1}{x^2+5x+6} \right)^{-1/2} \left[-\frac{2x^2+2x+17}{(x^2+5x+6)^2} \right] \)

9. \(y' = \frac{1}{3} \left[(4p^3 - 5p + 1)(7p - 4) \right]^{-2/3} \left[7(4p^3 - 5p + 1) + (7p - 4)(12p^2 - 5) \right] \)
10. $y' = \frac{1}{3} \left[\frac{(-3p^2+8p+1)(4p-7)}{p-2} \right]^{-2/3} \left[\frac{-24p^3+125p^2-212p+111}{(p-2)^2} \right]$

11. $y' = \frac{-7}{(x+2)(2x-3)\ln 3}$

12. $y' = -\frac{3}{2}x^{-\frac{3}{2}} + \frac{25}{3}x^{-\frac{8}{3}}$

13. $y' = (x + 1)^{-\frac{3}{2}} - \frac{8}{3}(x + 3)^{-\frac{4}{3}} + 7$

14. $y' = e^{x+2} + \frac{5}{5x-8} + 4$

Encontrar los valores máximos y mínimos para cada de las siguientes funciones (el lector encontrará los valores de y para cada x encontrada)

1. Máximo $x = -\frac{\sqrt{3}}{3}$ Mínimo $x = \frac{\sqrt{3}}{3}$
2. Máximo $x = 0$ Mínimo $x = \sqrt{2}$

3. Máximo $x = -\frac{1}{\sqrt{5}}$ Mínimo $x = \frac{1}{\sqrt{5}}$
4. Máximo $x = 0$ Mínimo $x = \frac{1}{2}$

5. Mínimo $x = 5$ Máximo $x = -5$
6. Máximo $x = 0$ Mínimos $x = -\frac{3\sqrt{2}}{2}$ $x = \frac{3\sqrt{2}}{2}$

Resolver los siguientes problemas

a. La cantidad de cerca usada es 245 metros. Además, $x = 24.49$ $y = 61.25$

b. Precio: 837.50 Utilidad: 653125

c. Aproximadamente 50 árboles más; producción máxima 45000 naranjas.

d. 12x12x3; Volumen máximo: 432cm^3

e. 35 y 35; producto máximo: 1225
SECCIÓN 5.4 ANTIDERIVADA DE FUNCIONES

Calcular la antiderivada de las siguientes funciones

1. \[\int f(x)dx = \frac{3}{32}x^8 - \frac{5}{3}x^{6/5} + 4x + C \]

2. \[\int f(x)dx = 2e^x + 3 \ln x + 6x^{1/3} + 2x^2 - 3x + C \]

3. \[\int f(x)dx = 2x + 3 \ln x + \frac{8}{x} - \frac{9}{7}x^{7/3} + 36x^{2/3} + 6x^{-2} + C \]

4. \[\int f(x)dx = 5e^x + 12x^{1/2} + 5 \ln x - 2x + C \]

5. \[\int f(x)dx = \frac{x^4}{2} - x^3 - \frac{17}{2}x^2 + \frac{24}{5}x^{5/2} - 9x + C \]

6. \[\int f(x)dx = \frac{2}{3}(x^2 - x + 3)^{3/2} + C \]

7. \[\int f(x)dx = \ln(x^3 - 2x^2 + 5x) + C \]

8. \[\int f(x)dx = 2e^{x^2-4x} + C \]

9. \[\int f(x)dx = \frac{1}{2 \ln 3}(3^{2x^3+2x}) + C \]

10. \[\int f(x)dx = e^{2x+x^2} + C \]

Calcular la integral definida de las siguientes funciones

1. \[\int_2^4(2x - 4)\,dx = 4 \]

2. \[\int_{-2}^0(3x^2 + x - 2)\,dx = 2 \]

3. \[\int_0^1 [(x + 3x - 1)(2x - x^2 + \sqrt{x^3})]\,dx = \frac{4461}{7700} \]

4. \[\int_{e^{\sqrt{2}}}^e \frac{e^x\,dx}{x} = 2 \]

5. \[\int_{\ln 2}^{\ln 5} 2e^x\,dx = 6 \]

6. \[\int_0^4 (2x\sqrt{x^2 + 1})\,dx = \frac{2}{3}(17\sqrt{17} - 1) \]

7. \[\int_0^1 [(2x - 1)e^{x^2-x}]\,dx = 0 \]

8. \[\int_0^2 \frac{4x+2}{2x^2+2x+5}\,dx = \ln 17 - \ln 5 \]
Resolver lo siguientes problemas

1. El modelo es \(P(t) = \frac{4}{3} t^3 + 3t^2 + 450t \). El número de accionistas es 6203

2. El número de televidentes tiene el modelo \(A(t) = -250e^{-2t} + 175t^2 + 550 \)

 Entre los 15 y los 40 minutos hay 240625. El nivel de audiencia es 268800

3. El modelo es \(F = 2 \ln(q^3 + q^2 + 150) + C \)